find radius of maximum area that lies between the two circles and commom tangent AB!?

2015-07-04 3:54 am

回答 (2)

2015-07-04 4:37 am
✔ 最佳答案
The center of the new circle must be equidistant from both circles and the common tangent.
x²+(y-3)²=(3+r)² and (x-2√3)²+(y-1)^2=(1+r)² and y=r

which you can resolve to: x = 3√3-3, y = (6-3√3)/2 = radius ← ANSWER
2015-07-04 10:10 am
A radius is a line and does not have area, so Euclid
states.


收錄日期: 2021-04-21 11:53:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150703195434AAxtD1S

檢視 Wayback Machine 備份