integrate 1/1+sec ax dx?
回答 (4)
∫ 1 / (1+ sec ax) dx
Let u= ax
du = a dx
du = dt/a
∫ 1 / (1+ sec ax) dx = (1/a) ∫ du /(1+ sec u)
= (1/a) ∫ cos(u) du /(cos(u)+ 1)
Let t=tan(u/2)
dt = (1/2) sec^2(u/2) du
dt = (1/2) (1+tan^2(u/2)) du
dt = (1/2) (1+t^2) du
du = 2/(1+t^2) dt
Let t= tan(u/2)
cos(u) = cos^2(u/2) -sin^2(u/2)
= |cos^2(u/2) -sin^2(u/2)]/[cos^2(u/2)+sin^2(u/2)]
Multiply and divide the numerator and the denominator of the right side by cos^2(u/2)
cos(u) = (1-tan^2(u/2)) /(1+tan^2(u/2))
cos(u) = (1-t^2)/(1+t^2)
(1/a) ∫ cos(u) du /(cos(u)+ 1) = (1/a) ∫(2) (1-t^2) dt / (1+t^2)^2 ( (1-t^2)/(1+t^2) +1)
= (1/a) ∫ (1-t^2)/(1+t^2) dt
= (1/a) ∫ dt /(1+t^2) - (1/a) ∫ t^2 /(1+t^2) dt
= (1/a) tan^-1(t) - (1/a) ∫ t^2 /(1+t^2) dt
∫ t^2 /(1+t^2) dt = ∫ (1+t^2-1) /(1+t^2) dt = ∫ dt - ∫ dt/(1+t^2) = t - tan^1(t)
(1/a) tan^-1(t) - (1/a) ∫ t^2 /(1+t^2) dt = (1/a) tan^-1(t) - (1/a) ( t - tan^1(t) )
= (2/a) tan^-1(t) - (1/a) t
replace t by tan(u/2)
= (2/a) tan^-1(tan(u/2)) - (1/a) tan(u/2)
replace u by ax
= (2/a) tan^-1(tan(ax/2)) - (1/a) tan(ax/2) + C
= (2/a) (ax/2) - (1/a) tan(ax/2) + C
= x -(1/a) tan(ax/2) + C
Hello,
∫ {1 /[1 + sec(ax)]} dx =
let:
tan[(ax)/2] = u
hence:
(ax)/2 = arctan u
ax = 2arctan u
x = (2/a)arctan u
dx = (2/a)[1 /(1 + u²)] du
moreover let's apply the tangent half-angle formula cosθ = [1 - tan(θ/2)] /[1 + tan²(θ/2)] then secθ = 1 /cosθ =
[1 + tan²(θ/2)] /[1 - tan²(θ/2)] and therefore sec(ax) = {1 + tan²[(ax)/2]} /{1 - tan²[(ax)/2]} =
(being tan[(ax)/2] = u) =
(1 + u²) /(1 - u²)
yielding, by substitution:
∫ {1 /[1 + sec(ax)]} dx = ∫ {1 /{1 + [(1 + u²) /(1 - u²)]} } (2/a)[1 /(1 + u²)] du =
∫ {1 /{[(1 - u²) + (1 + u²)] /(1 - u²)} } (2/a)[1 /(1 + u²)] du =
∫ {1 /[(1 - u² + 1 + u²) /(1 - u²)]} (2/a)[1 /(1 + u²)] du =
∫ {1 /[2 /(1 - u²)]} (2/a)[1 /(1 + u²)] du =
∫ [(1 - u²) /2]} (2/a)[1 /(1 + u²)] du =
(simplifying)
∫ (1 - u²) (1/a)[1 /(1 + u²)] du =
∫ (1/a)[(1 - u²) /(1 + u²)] du =
being numerator and denominator of the same order, let's add and subtract 1 in the numerator:
∫ (1/a)[(1 + 1 - 1 - u²) /(1 + u²)] du =
∫ (1/a){[2 - (1 + u²)] /(1 + u²)} du =
(distributing and simplifying)
∫ (1/a){[2 /(1 + u²)] - [(1 + u²) /(1 + u²)]} du =
∫ (1/a){[2 /(1 + u²)] - 1} du =
(splitting into two integrals and factoring constants out)
(1/a)2 ∫ [1 /(1 + u²)] du - (1/a) ∫ du =
(2/a) ∫ [1 /(1 + u²)] du - (1/a)u =
(2/a)arctan u - (1/a)u + C
finally let's substitute back (ax)/2 for arctan u and tan[(ax)/2] for u:
(2/a)[(ax)/2] - (1/a)tan[(ax)/2] + C =
ending with:
x - (1/a)tan[(ax)/2] + C
I hope it's helpful
收錄日期: 2021-04-21 11:53:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150703022722AATQAgl
檢視 Wayback Machine 備份