quadratic equation

2015-07-04 5:10 am
If the lengths of the 3 sides of a right-angled triangle are, in ascending order, z ,(5z-11) and (3z+4) cm, find the value of z.

回答 (3)

2015-07-04 5:21 am
✔ 最佳答案
Z2+(5Z-11)2=(3Z+4)2 (poly.theo)
Z2+25Z2-110Z+121=9Z2+24Z+16
17Z2-134Z+105=0
Z=7 or Z=0.88
2015-07-04 5:44 am
Pythagoras Theorem 或 Pythagorean Theorem
畢氏定理

直角三角形的三條邊 a, b, c, 若 c 是斜邊 (hypotenuse),那

a² + b² = c²

2015-07-03 21:47:18 補充:
因為是 ascending order,我們知道

z < 5z - 11 < 3z + 4

而斜邊是最長的。

因此,
z² + (5z - 11)² = (3z + 4)²
z² + 25z² - 110z + 121 = 9z² + 24z + 16
17z² - 134z + 105 = 0
(17z - 15)(z - 7) = 0
z = 15/17 or z = 7

未完!!!!!!!

2015-07-03 21:49:59 補充:
題目要求 z < 5z - 11 < 3z + 4

你要 check 答寀!!!!!!

z < 5z - 11 and 5z - 11 < 3z + 4
4z > 11 and 2z < 15
z > 11/4 and z < 15/2

11/4 < z < 15/2
2.75 < z < 7.5

因此,z = 15/17 要被 rejected!!!

答案是 z = 7。

2015-07-03 22:47:24 補充:
You are welcome!

╭∧---∧╮
│ .✪‿✪ │
╰/) ⋈ (\\╯
2015-07-04 5:31 am
may i ask how you get this step...(i know poly.thm)

2015-07-03 22:39:43 補充:
thanks!!!!


收錄日期: 2021-04-11 21:06:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150703000051KK00055

檢視 Wayback Machine 備份