Let f(x) = square root of x-10 and g(x) = x^2+9 . Which of the following statements are true?

2015-07-01 4:38 pm
The four statements are:
1. f of g(1) =0
2. f of g(10) =9
3. f of g(x) = f(g(x))=f(x^2+9) = square root of x^2+9
4. the function g is the inverse function of f

回答 (1)

2015-07-01 5:39 pm
✔ 最佳答案
1. √((1^2+9) - 10) = √(10-10) = 0
2. √((10^2+9) - 10) = √(109-10) = √99 = 3√11 ≠ 9
3. √((x^2+9) - 10) = √(x^2-1) ≠ √(x^2+9)
4. see 3. f(g(x)) ≠ x, so the functions are not inverse of each other.

Statement 1 is true.


收錄日期: 2021-04-21 11:41:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150701083840AAIccDP

檢視 Wayback Machine 備份