✔ 最佳答案
A = πab for an ellipseA(z) = π*x(z)*y(z) for many variable ellipseswhere x(z) = a√(c^2-z^2)/cy(z) = b√(c^2-z^2)/cdV(z) = A(z)*dz = π(c^2-z^2)ab*dz/c^2 E = (2左右/8象限)*∫∫∫xyz*dV ;; z = 0~c= 1/4*∫(c^2-z^2)z(ab/c^2)^2*π(c^2-z^2)dz= π(ab/c^2)^2/4*∫z(c^2-z^2)^2*dz= π(ab/c^2)^2/8*∫(c^2-z^2)d(z^2)= -π(ab/c^2)^2/8*∫(c^2-z^2)d(c^2-z^2)= -π(ab/c^2)^2/16 * (c^2-z^2)^2= -π(ab/c^2)^2/16 * [(c^2-c^2)^2 - (c^2-0)^2]= π(abc^4/c^2)^2/16= π(abc^2)^2/16= Answer
2015-06-17 06:41:43 補充:
漏打平方.修正如下:
E = -π(ab/c^2)^2/16*∫(c^2-z^2)^2*d(c^2-z^2)
= -π(ab/c^2)^2/16 * (c^2-z^2)^3/3
= -π(ab/c^2)^2/48 * [(c^2-c^2)^3 - (c^2-0)^3]
= π(ab)^2*c^6/48c^4
= π(abc)^2/48
2015-06-17 07:03:24 補充:
修改係數:
E = -π(ab/c^2)^2/8*∫(c^2-z^2)^2*d(c^2-z^2)
= π(abc)^2/24
2015-06-24 17:34:05 補充:
(2) dV 與 A dz 不相同?
Ans: dV = A(z)*dz 成立
Ex1.直圓錐
dV = A(z)*dz
= πx(z)^2*dz
= π[r*(h-z)/h]^2
V = π(r/h)^2∫(0~h)(h^2-2hz+z^2)dz
= π(r/h)^2(zh^2 - hz^2 + z^3/3)
= π(r/h)^2(h^3 - h^3 + h^3/3)
= πh*r^2/3
Ex2.半球體
dV = A(z)*dz
= πx(z)^2*dz
2015-06-24 17:35:01 補充:
V = π∫(r^2 - z^2)dz ;; z=0~r
= π(zr^2 - z^3/3)
= π(r^3 - r^3/3)
= 2πr^3/3
以上兩例證明 dV = A(z)*dz 成立