中二 三角形問題

2015-06-15 4:16 am
http://postimg.org/image/d7v4u1oxd/

1. 求r

怎樣求出r

2. 圖中, BAE =50, BCD =20 , CDE =170 及DEA =20 求x

http://postimg.org/image/yvk34hpbl/

我試左係AC之間劃線, 不過看不出有邊個角係同位角, 內錯角
唔知點求 x

回答 (4)

2015-06-15 4:57 am
✔ 最佳答案
1.
∠R + 優角∠P= 360° (同頂角)
∠R + (8r + 20°) = 360°
∠R = 340° ‒ 8r

∠P + ∠Q + ∠R = 180° (三角形內角和)
(r + 20°) + (2r ‒ 10°) + (340° ‒ 8r) = 180°
r + 20° + 2r ‒ 10° + 340° ‒ 8r = 180°
350° ‒ 5r = 180°
5r = 170°
r = 34°


====
2.
連 BD 及 BE。

ΔABE內角和 + Δ內角和 + Δ內角和 = 180° × 3
五邊形ABCDE內角和 = 540°
50° + (360° ‒ x) + 20° + (360° ‒ 170°) + 20° = 540°
50° + 360° ‒ x + 20° + 360° ‒ 170° + 20° = 540°
640° ‒ x = 540°
x = 100°


====
3.
多邊形外角和 = 360°
∠PUV + ∠QVW + ∠RWX + ∠SXY + ∠TYU = 360°
∠PVU + ∠QWV + ∠RXW + ∠SYX + ∠TUY = 360°

ΔPUV內角和: ∠PUV + ∠PVW + a = 180° ......[1]
ΔQVW內角和: ∠QVW + ∠QWV + e = 180° ...... [2]
ΔRWX內角和: ∠RWX + ∠RWX + d = 180° ...... [3]
ΔSXY內角和: ∠SXY + ∠SYX + c = 180° ...... [4]
ΔTYU內角和: ∠TYU + ∠TUY + b = 180° ...... [5]

[1] + [2] + [3] + [4] + [5] :
(∠PUV + ∠QVW + ∠RWX + ∠SXY + ∠TYU) + (∠PVU + ∠QWV + ∠RXW + ∠SYX + ∠TUY) + (a +b + c + d + e) = 180° × 5
360° + 360° + (a + b + c + d + e) = 900°
720° + (a + b + c + d + e) = 900°
a + b + c + d + e = 180°

2015-06-14 20:57:46 補充:
若有新題目,應另開新版發問。

2015-06-15 10:47:33 補充:
2.
應為:
「ΔABE內角和 + ΔBDE內角和 + ΔCBD內角和 = 180° × 3」
「五邊形ABCDE內角和 = 540°」

亦可用公式:多邊形內角和 = (n ‒ 2) × 180°
所以,五邊形ABCDE內角和 = (5 ‒ 2) × 180° = 540°

2015-06-17 10:32:24 補充:
3. 另解:

∠PUV 是 ΔUSQ 的外角: ∠PUV = c + e
∠PVU 是 ΔVTR 的外角: ∠PVU = b + d

ΔPUV 的內角和: ∠PUV + ∠PVU + a = 180°
(c + e) + (b + d) + a = 180°
a + b + c + d + e = 180°
2015-06-16 8:40 pm
Q3
Note that
a+c=angle XWR (ext. angle of triangle)
b+e=angle WXR (ext. angle of triangle)

Consider triangle WXR,
angle XWR+angle WXR+d=180 (angle sum of triangle)
a+c+b+e+d=180
2015-06-16 8:38 pm
1.
角PRQ=360-(8r+20)
角PRQ=340-8r
角PRQ+角RQP+角QPR=180
340-8r+r+20+2r-10=180
-5r=-170
r=34

2.
角ABC=360-x
角CDE=360-170
角CDE=190
角ABC+角BCD+角CDE+角DEA+角EAB=(5-2)*180
50+360-x+20+190+20=540
-x=-100
x=100

3.
a +b+c+d+e=180
用三角形外角到一個小三角形,最後是a+b+c+d+e=180
2015-06-15 6:30 am
第2 條點解係五邊形ABCDE內角和 ???


收錄日期: 2021-04-16 16:50:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150614000051KK00059

檢視 Wayback Machine 備份