✔ 最佳答案
Find a point D on BC such that AD丄BC. As cosA / a=cosC / c,so, c cosA=a cosCIn ΔABD, ΔACDBD=c cosA =a cosC =CD∠ADB=∠ADC=90° ⋯⋯ (AD丄BC)AD=AD ⋯⋯⋯⋯⋯⋯⋯⋯ (common)∴ ΔABD ≅ ΔACD ⋯⋯⋯⋯ (SAS)so, AB=AC ⋯⋯⋯⋯⋯⋯ (corr. sides, ≅ Δ)∴ ΔABC is an isosceles triangle.
2015-06-11 08:59:00 補充:
Sorry, there are something wrong on the letters, Write it again :
Find a point D on AC such that BD丄AC. As cosA / a=cosC / c,
so, c cosA=a cosC
In ΔABD, ΔCBD
AD=c cosA
=a cosC
=CD
∠ADB=∠CDB=90° ⋯⋯ (BD丄AC)
BD=BD ⋯⋯⋯⋯⋯⋯⋯⋯ (common)
∴ ΔABD ≅ ΔCBD ⋯⋯⋯⋯ (SAS)
2015-06-11 09:01:37 補充:
so, AD=CD ⋯⋯⋯⋯⋯⋯ (corr. sides, ≅ Δ)
∴ ΔABC is an isosceles triangle.
2015-06-11 10:20:44 補充:
ABD is a right-angled triangle with ∠D=90°, so
AD/AB = cos A
==> AD=c cos A ⋯⋯ (AB=c)
Similarly, CD=a cos C
As c cos A=a cos C
therefore, AD=CD