✔ 最佳答案
1. r=2*sin2θ 與 r=2*cos2θ 葉片曲線之間的面積=?
r = 2*sin2Q = 2*cos2Q ==> tan2Q = 1
2Q = π/4, 5π/4 ==> Q = π/8, 5π/8
A = 0.5*2∫(π/8~5π/8)(sin2Q - cos2Q)dQ * 4葉片= 2*(-cos2Q - sin2Q)= -2*(cos2Q + sin2Q)= -2*(cos5π/4 + sin5π/4 - cosπ/4 - sinπ/4)= -2*(-√2/2 - √2/2 - √2/2 - √2/2)= 4√2
2. x^2+2y^2=2 上半部繞x軸旋轉,蛋的表面積=?y' = -x/2yS = ∫(0~√2)πy√(1+y'^2)dx= ∫πy√(1 + x^2/4y^2)= ∫π√(y^2 + x^2/4)dx= (π/2)∫√x^2 + 4y^2)dx ;;; x^2=2-2y^2= (π/2)∫√(2 + 2y^2)dx= (π/√2)∫√(1 + y^2)dx= (π/√2)∫√[1 + (2-x^2)/2]dx= (π/2)∫√(4 - x^2)dx= 2π∫√[1 - (x/2)^2]d(x/2)= 2π∫√(1-t^2)dt ;;; t=x/2= 2π∫√(1-sin^2Q)cosQdQ ;;; t=sinQ= 2π∫cos^2Q*dQ= π∫(1 + cos2Q)dQ= π(Q + 0.5sin2Q) = π[asin(t) + sinQcosQ]= π[asin(t) + t√(1-t^2)]= π[asin(x/2) + (x/2)√(1-x^2/4)] = π[asin(√2/2) + (√2/2)√(1-2/4)] = π(π/4 + √2/2√2) = π (π + 2) / 4
2015-06-08 05:30:43 補充:
修改第1題:
A1 = 半葉非重疊區
= 0.5*2∫(π/8~π/4)(sin2Q - cos2Q)dQ
= -(cos2Q + sin2Q) / 2
= -(cos90 + sin90 - cos45 - sin45) / 2
= -(0 + 1 - √2/2 * 2) / 2
= (√2 - 1) / 2
A2 = 半葉面積
= ∫(0~45)sin2Q*dQ
= -0.5*cos2Q
= -0.5*(cos90 - cos0)
= -0.5*(0 - 1)
= 1/2
2015-06-08 05:31:23 補充:
A3 = 半葉重疊面積
= A2 - A1
= (1 - √2 + 1)/2
= (2 - √2) / 2
如果要求重疊面積, 則
8*A3 = 4*(2 - √2)