求解以下數學題

2015-06-04 11:54 pm
1) Find sinθ cosθ, given tanθ=2.
2) Solve 4sinx + 3cosx = 2sinx - cosx for 0° ≤ x ≤ 360°

回答 (2)

2015-06-05 3:46 am
✔ 最佳答案
1) Find SinθCosθ,given Tanθ=2
Sol
SinθCosθ
=SinθCosθ/(Sin^2 θ+Cos^2 θ)
=Tanθ/(1+Tan^2 θ)
=2/5
1A) Find Sinθ,Cosθ,given Tanθ=2
Sol
(1) Sinθ>0
Sinθ=2/√5
Cosθ=1/√5
(2) Sinθ<0
Sinθ=-2/√5
Cosθ=-1/√5

2) Solve 4Sinx+3Cosx=2Sinx-Cosx for 0° ≤ x ≤ 360°
Sol
4Sinx+3Cosx=2Sinx-Cosx
2Sinx=-4Cosx
Tanx=Sinx/Cosx=-4/2=-2
x=180°-ArcTan2 orx=360°-ArcTan2
x=180°-63.43° orx=360°-63.43°
x=116.57°or x=296.57°

3) Cos(180°+θ)*Tan(360°-θ)/Sin(180°-θ)
Sol
Cos(180°+θ)*Tan(360°-θ)/Sin(180°-θ)
=(-Cosθ)*(-tanθ)/Sinθ
=1


2015-06-05 3:34 am


收錄日期: 2021-04-16 16:44:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150604000051KK00031

檢視 Wayback Machine 備份