F.5 Maths M1 differentiation

2015-05-31 7:28 pm
A rectangle is to be inscribed in the circle x^2 + y^2=36.
Find the largest possible area of this rectangle.

From the equation, I can know that centre of circle=(0,0), and the radius=6 units.
But how can I set the formula of area of rectangle to do differentiation??

Please help, thank you!

回答 (2)

2015-06-01 7:31 am
✔ 最佳答案
http://s17.postimg.org/3z7kmohyl/image.png

2015-05-31 23:31:59 補充:


呢題或且可以General咁講
如果題目比左 (x-h)²+(y-k)²=r² ...... (1)
From (1) , we have y=k±√[r²-(x-h)²]

首先 Let (x,y) 係哥個長方形嘅最右上角哥點
然後用 (x,y) 同 (1) 嘅 h 同 k 去 set 番其餘嘅格
即 (2h-x,y) , (x,2k-y) , (2h-x,2k-y) , 可看
http://s24.postimg.org/k7jhflepf/image.png

Length=x-(2h-x)=2(x-h)
Width=y-(2k-y)=2(y-k)

再 Let A be the area of rectangle
A=4(x-h)(y-k) ...... (2)

Consider y=k+√[r²-(x-h)²] ...... (3)
Sub (3) into (2)
A=4(x-h){k+√[r²-(x-h)²]-k}
A=4(x-h)√[r²-(x-h)²] ...... (4)

Differentiate (4) with respect to x
A'=4√[r²-(x-h)²] + 4(x-h)[-(x-h)/√[r²-(x-h)²]
A'=4√[r²-(x-h)²] - 4(x-h)²/√[r²-(x-h)²]

For A'=0,
4√[r²-(x-h)²] - 4(x-h)²/√[r²-(x-h)²]=0
4r² - 4(x-h)² - 4(x-h)²=0
4r²=8(x-h)²
x=r/√2 +h
{y=k+√[r²-(r/√2 +h-h)²]=k + r/√2 or k - r/√2}

A"=-12(x-h)/√[r²-(x-h)²] - 4(x-h)³/[r²-(x-h)²]^(3/2)
A"(x=r/√2 +h)=-16<0

∴A=4(r/√2 +h-h)√[r²-(r/√2 +h-h)²]=2r²


For x²+y²=36 ,
http://s29.postimg.org/hgz7wcbwl/image.png
h=0 , k=0 , r=6
∴A=2(6)²=72




2015-05-31 23:38:06 補充:
謝謝 !!

2015-06-01 10:15:10 補充:
1.
用centre同右上角哥點(x,y)去計算其餘嘅哥3個點
你可以先看
http://s4.postimg.org/d45fqw797/231.png
再看其餘嘅步驟
http://s24.postimg.org/k7jhflepf/image.png

2.
(x-h)²+(y-k)²=r²...(1)
呢步可以唔洗用呢3點住(2h-x,y),(x,2k-y),(2h-x,2k-y)
直接將(1)嘅y做主項
(x-h)²+(y-k)²=r²
(y-k)²=r²-(x-h)²
y-k=±√[r²-(x-h)²]
y=k±√[r²-(x-h)²]

2015-06-01 18:15:20 補充:
補充:
For A' = 0,
x = h + r/√2 or h - r/√2 (rejected)
[ 因為而家係想計算長方形右上角哥點 ]
[ 而哥點 (x,y) 都係有個 + 係到 ]
[ 即 x = h + r/√2 , y = k + r/√2 ]
2015-05-31 8:34 pm
For rectangle inscribed in x² + y² = 36, the vertices must be
(x, y), (x, -y), (-x, y) and (-x, -y)

Without loss of generality, assume the point (x, y) is in the first quadrant.

Therefore, the area is (2x)(2y) = 4xy

You are going to maximize 4xy with the constraint of x² + y² = 36.

2015-05-31 12:35:25 補充:
In other words, you are trying to maximize

Area (as a function of x)
A(x) = 4x√(36 - x²)

2015-05-31 15:03:39 補充:
回 YTC,妳問得好好!
如果圓心不在原點 (origin),那情況會複雜一點。
不能夠單單用 reflection 的原理知道其他坐標的位置。

如果真的要處理那種情況,我會考慮用 parametric equation 的寫法:
{ x = h + r cosθ
{ y = k + r sinθ

但我明白這個做法對於 M1 的同學會太複雜,所以暫不作詳談。

也因為如此,所以題目只問 centre 在 origin 的情況。

也謝謝 HK~ 於意見003 的畫圖。
我最近較忙,HK~ 請作答吧~

2015-05-31 15:04:40 補充:
> How can you know that the first vertice you can find must be (x,y)?

> 看意見003的圖即可明白。
> 4個vectice必定各自在一個quadrant。

2015-05-31 15:05:00 補充:
> 於 centre = origin 的情況

2015-06-01 15:43:16 補充:
我建議 YTC 首先明白原題 h = 0, k = 0 的情況。

然後再學習 h, k 非零的情況, 這樣會清晰一點。


收錄日期: 2021-04-16 16:42:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150531000051KK00021

檢視 Wayback Machine 備份