✔ 最佳答案
1.已知z=z1+z2,z1與x成反比,z2與x成正比,當x=1時z=5,當x=2時z=7
,求當x=4時z=?
Sol
z=m/x+nx
5=m+n
7=m/2+2n
(m+n)-2*(m/2+n)=5-2*7
-3n=-9
n=3
m=2
m/4+4n=1/2+12=12.5
z(4)=12.5
2.f(x)=|2x+2|+|2x-1|,當x的範圍為( ) 時,f(x)是常數函數.
Sol
2x+2=0=>x=-1
2x-1=0=>x=1/2
─────*───────*──────
-1 1/2
(1) x<-1
2x<-2
2x+2<0
|2x+2|=-2x-2
2x-1<-3
|2x-1|=-2x+1
f(x)=|2x+2|+|2x-1|=(-2x-2)+(1-2x)=-4x-1
(2) -1<=x<=1/2
-2<=2x<=1
0<=2x+2<=2
|2x+2|=2x+2
-3<=2x-1<=0
|2x-1|=-2x+1
f(x)=|2x+2|+|2x-1|=(2x+2)+(1-2x)=1
(3) 1/2<x
1<2x
3<2x+2
|2x+2|=2x+2
0<2x-1
|2x-1|=2x-1
f(x)=|2x+2|+|2x-1|=(2x+2)+(2x-1)=4x+1
綜合 (1),(2),(3)
-1<=x<=1/2
3.f(x+y)=f(x)+f(y)+xy,且 f(1)=5,求f(3)=?
Sol
f(2)=f(1+1)=f(1)+f(1)+1*1=11
f(3)=f(1+2)=f(1)+f(2)+1*2=5+11+2=18
4.f(n+3)=f(n)-3,且f(23)=3,求f(-13)=?
Sol
f(n+3)=f(n)-3
f(n+6)=f(n+3)-3=f(n)-2*3
f(n+9)=f(n+6)-3=f(n)-3*3
So
k為正整數
f(n+3k)=f(n)-3k
f(23)=f(-13+3*12)=f(-13)-36
3=f(-13)-36
f(-13)=39
5.f(x+2)-f(x-2)=x,求 f(20)-f(4)=?
Sol
f(20)-f(16)=18
f(16)-f(12)=14
f(12)-f(8)=10
f(8)-f(4)=6
f(20)-f(4)=18+14+10+6=48
6.f[(x-6)/(3-x)]=x-4,求 f(2)=?
Sol
(x-6)/(3-x)=2
x-6=6-2x
3x=12
x=4
f(2)=f[(4-6)/(3-4)]=4-4=0