✔ 最佳答案
1.
8x⁶ ‒9x³ + 1 = 0
8(x³)² ‒ 9(x³) + 1= 0
(x³ ‒ 1)(8x³ ‒1) = 0
(x³ ‒ 1)[(2x)³ ‒1)] = 0
(x ‒ 1)(x² + x + 1)(2x ‒ 1)[(2x)² +2x + 1] = 0
(x ‒ 1)(x² + x + 1)(2x ‒ 1)(4x² +2x + 1) = 0
x = 1 or x = (‒1 ± i√3)/2 or x= 1/2 or x = (‒1 ± i√3)/4
[If you have not learned about imaginary numbers,]
[the roots x = (‒1 ± i√3)/2 and x = (‒1 ± i√3)/4 are rejected.]
====
2.
8x⁶ ‒10x⁴ ‒ 12x² =0
4x⁶ ‒ 5x⁴ ‒ 6x² = 0
x²(4x⁴ ‒ 5x² ‒ 6) =0
x²(4x⁴ ‒ 5x² ‒ 6) =0
x²(x² ‒ 2)(4x² +3) = 0
x = 0 (double roots) or x = ±√2 or x = ±i(√3)/2
[If you have not learned about imaginary numbers,]
[the roots x = ±i(√3)/2 are rejected.]
====
3.
let y = √(x + 1)
2√(x + 1) ‒ 3 = 2 / √(x + 1)
2y ‒ 3 = 2/y
(2y ‒ 3)y = (2/y)y
2y² ‒ 3y = 2
2y² ‒ 3y ‒ 2 = 0
(y ‒ 2)(2y + 1) = 0
y = 2 or y = ‒1/2
√(x + 1) = 2 or √(x + 1) = ‒1/2 (rejected)
x + 1 = 4
x = 3
====
4.
Let n and (n + 1) be the two consecutive integers.
[1 / n] + [1 / (n + 1)] = 5/6
[(n + 1) / n(n + 1)] + [n / n(n + 1)] = 5/6
[(n + 1) + n] / n(n + 1) = 5/6
(2n + 1) / (n² + n) = 5/6
5(n² + n) = 6(2n + 1)
5n² + 5n = 12n + 6
5n² ‒ 7n ‒ 6 = 0
(n ‒ 2)(5n + 3) = 0
n = 2 or n = ‒3/5 (rejected)
n + 1 = 3
Ans: The two consecutive integers are2 and 3.