代數與最小值 (1)

2015-05-12 6:33 am
已知正整數 a, b, c, x, y 及 z 滿足以下方程:

a + b + c = x
ab + ac + ab = y
abc = z
x + y + z = 6967

求 x 的最小值。

回答 (2)

2015-05-12 5:02 pm
✔ 最佳答案

a+b+c=x ⋯⋯⋯⋯ (i)
ab+bc+ca=y ⋯⋯ (ii)
abc=z ⋯⋯⋯⋯⋯⋯ (iii)
x+y+z=6967 ⋯⋯ (iv)

From (i), (ii), (iii), (iv), we get
(a+1)(b+1)(c+1)
=abc+ab+bc+ca+a+b+c+1
=z+y+x+1
=6967+1
=2*2*2*13*67

Assume 0<a ≦ b ≦ c, so, 1<(a+1) ≦ (b+1) ≦ (c+1)
Therefore, (a, b, c) can be
(1, 1, 1741), (1, 3, 870), (1, 25, 133), (3, 25, 66), (3, 12, 133), (7, 12, 66)
So, x can be 1742, 874, 159, 94, 148, 85.
ie. the minimum value of x is 85.
2015-05-12 9:18 am
answer is 85


收錄日期: 2021-04-11 21:02:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150511000051KK00067

檢視 Wayback Machine 備份