✔ 最佳答案
...................
若60度<=∠A<=120度,求(2+SinA)/(2+CosA)的最大值?Sol∠A=2∠B30度<=∠B<=60度SinA=Sin(2B)=2SinBCosB=2SinBCosB/(Sin^2 A+Cos^2 A)=2TanB/(1+Tan^2 B)CosA=Cos(2B)
=Cos^2 B-Sin^2 B
=(1-Tan ^2B)/(1+Tan^2 B)
p=(2+SinA)/(2+CosA)
=[2+2TanB/(1+Tan^2 B)]/[2+(1-Tan ^2 B)/(1+Tan^2 B)]
=(2+2Tan^2 B+2TanB)/(2+2Tan^2 B+1-Tan^2 B)
=(2Tan^2 B+2TanB+2)/(Tan^2 B+3)
x=TanB
√3/3<=x<=√3
y=(2x^2+2x+2)/(x^2+3)
y(x^2+3)=2x^2+2x+2
y’(x^2+3)+2xy=4x+2
y’(x^2+3)+2x(2x^2+2x+2)/(x^2+3)=4x+2
y’(x^2+3)=4x-(4x^3+4x+4)/(x^2+3)
y’(x^2+3)=(4x^3+12x-4x^3-4x-4)/(x^2+3)
y’(x^2+3)=(8x-4)/(x^2+3)
y’=(8x-4)/(x^2+3)^2
Set y’=0
x=1/2
1/2<√3/3
當x=√3/3
(2*1/3+2*√3/3+2)/(1/3+3)
=(2+2*√3+6)/(1+9)
=(4+√3)/5
當x=√3
(2*3+2*√3+2)/(3+3)
=(4+√3)/3
最大值=(4+√3)/3