✔ 最佳答案
1.
(i) z = k(√x)y²
(ii) c = kb³/a²
(iii) t = ku²/v³
(iv) z = k(√x)/y³
====
2.
(i)
a ∝ bc
Then a = kbc, where k is a constant.
a = 12 when b = 9 and c = 3.
12 = k(9)(3)
k = 4/9
a = (4/9)bc
(ii)
When b = -9 and c = 5 :
a = (4/9)(-9)(5)
a = -20
====
3.
(i)
z ∝ x√y
z = kx√y, where k is a constant.
z = 64 when x = 4 and y = 16 :
64 = k(4)√16
k = 4
z = 16x√y
(ii)
When x = 10 and y = 9/4 :
z = 16(10)√(9/4)
z = 240
====
4.
(i) p = k1q²+ k2r²
(ii) m = (k1/n³)+ k2q²
(iii) z = k1 + k2xy
(iv) a = k1 + (k2/b³)+ k3c
====
5.
r ∝ p/√q
r = kp/√q where k is a constant.
ro = kpo/√qo
When p = po/2 and q = qo/2
r = k(po/2)/√(qo/2)
r = (1/√2)kpo/√qo
r = (√2)/2ro
% change in r
= [(√2)/2 - 1] × 100%
= {[100(√2) - 200]/2}%
≈ -29.289%
====
6.
(i)
u = k1t + k2t³
where k1 and k2 are constants.
When t = 1, u = 3 :
k1 + k2 = 3 ... [1]
When t = 3, u = 21 :
k1(3) + k2(3)³ = 21
k1 + 9k2 = 7 ... [2]
[2] - [1] :
8k2 = 4
k2 = 1/2
Put into [1] L
k1 + (1/2) = 3
k1 = 5/2
u = (5t/2) + (t³/2)
What are a and b ?
(ii)
What are a and b ?
====
7.
z ∝ (3x - 2)²/(2y + 1)
z = k(3x - 2)²/(2y + 1), where k isa constant.
When x = -1 and y = 2, z = 1 :
1 = k[3(-1) - 2]²/[2(2)+ 1]
25k/5 = 1
k = 1/5
z = (3x - 2)²/[5(2y+ 1)]
8.
S = k1t²+ (k2/t)
where k1 and k2 are constants.
S = 5 when t = 1 :
5 = k1(1)²+ [k2/(1)]
k1 + k2 = 5 ... [1]
S = 13 when t = 2 :
13 = k1(2)²+ [k2/(2)]
4k1 +(k2/2) = 13
8k1 + k2 = 26 ... [2]
[2] - [1] :
7k1 = 21
k1 = 3
Put into [1] :
3 + k2 = 5
k2 = 2
S = 3t²+ (2/t)