✔ 最佳答案
Suppose X has a probability mass function p(x).
That means, p(x) = Pr(X = x)
Then, the expectation of X is
E(X) = ∑ x p(x) where the sum is summing over all possible values of x.
Similarly, the expectation of a function of X, such as g(X), can be defined as
E[g(X)] = ∑ g(x) p(x) where the sum is summing over all possible values of x.
Now, in your green part.
X ~ B(n, p)
p(x) = Pr(X = x) = nCx (p)^x (1 - p)^(n - x)
g(x) = x(x - 1)
The possible values of x is 0, 1, 2, ..., n.
(This is actually called the support of X.)
Therefore, you have
E[X(X - 1)] = ∑ (x)(x - 1) nCx (p)^x (1 - p)^(n - x)
There is no "name" for that formula.
Just check the meaning of "expectation" or "expected number".
2015-04-17 12:51:35 補充:
YTC,你睇下以下的帖:
https://hk.knowledge.yahoo.com/question/question?qid=7015041100138
有中四 compulsory 同埋 M1 的 練習!!!
2015-04-17 23:09:40 補充:
有你這麼勤力的同學,大家的將來就有救了~
好好保重~
╭∧---∧╮
│ .✪‿✪ │
╰/) ⋈ (\\╯
2015-04-23 14:14:37 補充:
YTC, 可以看看這份試卷:
https://www.sendspace.com/file/gkwcgd
2015-04-24 23:58:35 補充:
其實已經比較慢,我一直在網上等待有人upload,但現在仍未有 Paper 2。
答案則一早已經有:
http://ronaldchik.blogspot.hk/2015/04/part-1-q1-14-2015-dse-math-paper-1.html
https://www.facebook.com/media/set/?set=a.877493022315303.1073741834.110776975653582&type=1
https://www.sendspace.com/file/4wqhke
2015-04-26 03:05:02 補充:
可能你未到中六,而且暫時未準備充足吧~
不要氣餒~
我聽別人說,本年的題都比往年的容易。
但容易未必是好事,因為要拿得好成績相對就要更高分~
你仍有時間,努力吧~
你花在 M1 的時間都會對 M0 有用,始終數學都是講求有相關的知識、邏輯、表達。
2015-04-29 14:04:08 補充:
M1 卷在此:
https://www.dropbox.com/sh/u1whegza2ynpyc4/AADhE9KQ6b5JbDA4NrNkjvjGa?dl=0