Given:
(i) 3 sides in A.P., i.e. a, a+d, a+2d; (ii) one angle is right angle 90°
Find a:(a+d):(a+2d)=?
The longest side a+2d must be the hypotenuse, the other two shorter sides a and a+d form the right angle.
Using the Pythagorus Theorem:
(a+2d)^2=a^2+(a+d)^2
a^2+4ad+4d^2=a^2+a^2+2ad+d^2
2ad+3d^2=a^2
a^2-2ad-3d^2=0
(a+d)(a-3d)=0
a=-d or a=d/3
When a=-d, a+d=0 (rejected for invalid length)
When a=d/3, a+d=4d/3, a+2d=7d/3
a:(a+d):(a+2d)=d/3:4d/3:7d/3=1:4:7
2015-03-31 19:09:48 補充:
Correction:
(a+d)(a-3d)=0
a=-d or a=3d
When a=-d, a+d=0 (rejected for invalid length)
When a=3d, a+d=4d, a+2d=5d
a:(a+d):(a+2d)=3d:4d:5d=3:4:5