✔ 最佳答案
圖片參考:
https://s.yimg.com/rk/AD06198854/o/1126004215.png
4.ABCD=正方形,∠ADF=∠FDG=∠CDE, AF=5, CG=7, DG=?
x = AD = CD = ?
作FH⊥GD => ΔAFD ≡ ΔHFD (AAS)=> HD = AD = x, FH = AF = 5=> GH = GD - HD = √(x^2 + 49) - x
FB = x - 5, BE = x - 7GF^2 = (x - 5)^2 + (x - 7)^2 => GF = √(2x^2 - 24x + 74)
直角ΔFGH裡面: FG^2 = FH^2 + GH^22x^2 - 24x + 74 = 25 + [√(x^2 + 49) - x]^2x = √95=> DG = √(x^2 + 49) = √(95 + 49)= √144= 12
1.ΔABC: BC=30公分, D.E分別在AB.AC上, 且DE//BC, DE=半圓直徑,半圓與BC相切。ΔABC=150公分^2,半圓DE面積=?
作AH⊥BC交DE於G點:ΔABC = 150= BC*AH/2= 30*AH/2= 15*AH
=> AH = 10 cmDE = 2r => AG = 10-rDE//BC => AG/AH = DE/BC=> (10-r)/10 = 2r/30=> r = 6=> Semi-circle = π*r^2/2 = 18π cm^2
2.A=(-2、6), B=(1、7), C=(5、5), ΔABC外心=?, 外接圓面積=?AC中垂線: (x+2)^2 + (y-6)^2 = (x-5)^2 + (y-5)^2=> 7x - y -5 = 0BC中垂線: (x-1)^2 + (y-7)^2 = (x-5)^2 + (y-5)^2=> 2x - y = 0相減: x = 1 => y = 2=> O = 外心 = (1,2)R = OC= √[(5-1)^2 + (5-2)^2]= √(16 + 9)= 5
外接圓面積= π*R^2= 25π
2015-03-26 13:45:16 補充:
3.連接PQ交AB於O點
ΔPQA ≡ ΔPQB (SSS)
=> ∠APO = ∠BPO, ∠AQO = ∠BQO
=> ΔAPO ≡ ΔBPO (SAS)
=> ∠AOP = ∠BOP = 90 deg, AO = BO
=> PQ = AB中垂線