中四數學問題,請教

2015-03-06 5:33 am
請問:
let f(x) be a polynomial.when x^3+x^2-3x-4 is divided by f(x),the remainder is -x+4,find f(x)
a. x-2.
b. x+1
c.x^2-3x+5
d.x^2+3x+4

回答 (2)

2015-03-06 8:20 am
✔ 最佳答案
Let x³ + x² - 3x - 4 = p(x) f(x) - x + 4 , where f(x) is a polynomial of degree > 1 and not more than 3 , then x³ + x² - 2x - 8 = p(x) f(x).Note that p(2) f(2) = (2)³ + (2)² - 2(2) - 8 = 0 ,
by remainder theorem, x - 2 is a factor of x³ + x² - 2x - 8.
x³ + x² - 2x - 8
= x³ - 8 + x(x - 2)
= (x - 2)(x² + 2x + 4) + x(x - 2)
= (x - 2)(x² + 3x + 4)∴ p(x) = x - 2 , f(x) = x² + 3x + 4 , the answer is D.
2015-03-06 5:43 am
由於 remainder 是 polynomial of degree 1
你可以考慮 divisor 是 polynomial of degree larger than 1
a. 和 b. 可以被否決。

再考慮 (dividend - remainder) 要可以被 divisor f(x) 整除,你就可以知道是 c. 和 d. 之中的哪一個。


收錄日期: 2021-04-21 22:31:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150305000051KK00115

檢視 Wayback Machine 備份