✔ 最佳答案
44.
The answer : C. 336
Case 1 :
Arrange 1 person from C and D to take the 1st position (2P1),1 person from of A, B, E and F to take the 2nd position (4P1),and the rest 4 people take the rest positions (4P4).
Case 2 :
Arrange 1 person from E and F to take the 1st position (2P1),1 person from A, B and the one from E to F who has not been arranged to takethe 2nd position (3P1), and the rest 4 people take therest positions (4P4).
Number of arrangement
= 2P1 × 4P1 × 4P4+ 2P1 × 3P1 × 4P4
= 2 × 4 × 24 + 2 × 3 × 24
= 336
====
45.
The answer : C. 4.8
Variance of the group of the 6 numbers :
[(x1 - 8)² + (x2 - 8)² + ...... + (x6- 8)²] / 6 = 6
(x1 - 8)² + (x2 - 8)² + ...... + (x6- 8)² = 36
Variance of the group of the 4 numbers :
[(x7 - 8)² + (x8 - 8)² + ...... + (x10- 8)²] / 4 = 3
(x7 - 8)² + (x8 - 8)² + ...... + (x10- 8)² = 12
Variance of the group of these 10 numbers
= [(x1 - 8)² +(x2 - 8)² + ...... + (x6- 8)²] / 10
= [(x1 - 8)² +(x2 - 8)² + ...... + (x6- 8)² + (x7 - 8)² + ...... + (x10- 8)²] / 10
= (36 + 12) / 10
= 4.8
====
17.
The answer : B. 1 : 3
Join BE.
ΔABE and ΔBDC have the same altitude, and with the bases AB : BC = 1 : 2respectively.
(Area of ΔABE) : (Area of ΔBCD) = 1 : 2
Let (Area of ΔABE) = k and (Area of ΔABC) = 2k
ΔABF and ΔABE have the same altitude, and with the bases AF : AE = 2 : (2 + 1)= 2 : 3
Area of ΔABF
= (Area of ΔABF) × (2/3)
= (2/3)k
(Area of ΔABF) : (Area of ΔBCD)
= (2/3)k : 2k
= 1 : 3
2015-03-10 00:22:32 補充:
我用的方法是必須兩組數的平均數相同,而兩組數合成一組時,新的平均數也與原來的兩個平均數相同。
若兩組數的平均數不同,則要用 知足常樂 師兄所提供的方法了。