Maths M2

2015-03-02 1:13 am
1.
(a) Prove that (cos2A+cos4A)/(sin2A-sin4A) =-cotA
(b) Prove that (sin2A+sin4A+sin6A)/(cos2A+cos4A+cos6A) =tan4A

2. If cos2A=sin(45°+A) and cos2A =/ 0, prove that
(a) sinA+cosA=√2 cos2A
(b) cosA-sinA=1/√2
(c) cos15°=(√6 +√4)/4

3.
(a) Prove that 40sinA+9cosA=41sin(A+α), where tanα=/40 and 0<α<π/2
(b) Hence, find the maximum and minimum values of 40sinA+9cosA

回答 (1)

2015-03-02 2:37 am
✔ 最佳答案
1.
(a)
L.H.S.
= (cos2A + cos4A) / (sin2A - sin4A)
= (cos2A + 2 cos²2A - 1) / (sin2A - 2 sin2A cos2A)
= (2 cos2A - 1)(cos2A + 1) / [sin2A(1 - 2 cos2A)]
= -(1 - 2 cos2A)(cos2A + 1) / [sin2A(1 - 2 cos2A)]
= -(cos2A + 1) / sin2A
= -(2 cos²A - 1 + 1) / (2 sinA cosA)
= -2 cos²A / (2 sinA cosA)
= -cosA / sinA
= -cotA
= R.H.S.

Hence, (cos2A + cos4A) / (sin2A - sin4A) = -cotA


(b)
L.H.S.
= (sin2A + sin4A + sin6A) / (cos2A + cos4A + cos6A)
= [(sin2A + sin6A) + sin4A] / [(cos2A + cos6A) + cos4A]
= [2 sin4A cos2A + sin4A] / [2 cos4A cos2A + cos4A]
= sin4A (2 cos2A + 1) / [cos4A (2 cos2A + 1)]
= sin4A / cos4A
= tan4A
= R.H.S.

Hence, (sin2A + sin4A + sin6A) /(cos2A + cos4A + cos6A) = tan4A

====
2.
(a).
sin(45° + A) = cos2A
cos45° sinA + sin45° cosA = cos2A
(1/√2) sinA + (1/√2) cosA = cos2A
(1/√2) (sinA + cosA) = cos2A
Hence, sinA + cosA = √2 cos2A


(b)
cos2A = sin(45° + A)
cos²A - sin²A =sin45° cosA + cos45° sinA
(cosA + sinA) (cosA - sinA) = (1/√2) cosA + (1/√2) sinA
(cosA + sinA) (cosA - sinA) = (1/√2) (cosA + sinA)
Hence, cosA - sinA = 1/√2


(c)
cos15° = cos(45° - 30°)
cos15° = cos45° cos30° - sin45° sin30°
cos15° = [(√2)/2] × [(√3)/2] - [(√2)/2] × (1/2)
cos15° = [(√6)/4] + [(√2)/4]
Hence, cos15° = [(√6) + (√2)]/4


====
3.
(a)
tanα = 9/40
sinα = 9 / √(9² + 40) = 9/41
cosα = 40 / √(9² + 40) = 40/41

L.H.S.
= 40 sinA + 9 cosA
= 41 [(40/41) sinA + (9/41) cosA]
= 41 [cosα sinA + sinα cosA]
= 41 sin(A + α)
= R.H.S.

Hence, 40 sinA + 9 cosA = 41 sin(A + α)


(b)
-1 ≤ sin(A + α) ≤ 1
-41 ≤ 41 sin(A + α) ≤ 41

But 41 sin(A + α) = 40 sinA + 9 cosA
-41 ≤ (40 sinA + 9 cosA) ≤41

The maximum value of (40 sinA + 9 cosA) = 41
The minimum value of (40 sinA + 9 cosA) = -41


收錄日期: 2021-04-15 18:23:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150301000051KK00061

檢視 Wayback Machine 備份