✔ 最佳答案
x^2 + [(2√3 + 3√2)/6]x + 1/√6
= x^2 + [(1/√3 + 1/√2)]x + (1/√3)(1/√2)
= x^2 + (1/√3)x + (1/√2)x + (1/√3)(1/√2)
= x[x + (1/√3)] + (1/√2)[x + (1/√3)]
= [x + (1/√3)][x + (1/√2)]
[(1 + i)^3 - (1 - i)^3] / [(1 + i)^2 - (1 - i)^2]
= [(1 + 3i + 3i^2 + i^3) - (1 - 3i + 3i^2 - i^3)] / [(1 + 2i + i^2) - (1 - 2i + i^2)]
= (6i + 2i^3) / 4i
= (6i - 2i) / 4i
= 1
新兩根和 = (a + 2b) + (2a + b) = 3(a + b) = 3(5) = 15
新兩根積 = (a + 2b)(2a + b) = 2a^2 + 2b^2 + 5ab = 2(a + b)^2 + ab
= 2(5)^2 + (2) = 52
方程為 x^2 - 15x + 52 = 0
(3y - 2x) / (2x - 4y) = 2
3y - 2x = 4x - 8y
6x = 11y
y = 6x/11
所以 √(x + y) : √(x - y)
= √(x + 6x/11) : √(x - 6x/11)
= √(17x/11) : √(5x/11)
= √17 : √5
設三邊為 a - d, a, a + d
則三邊的比為 (a - d) : a : (a + d)
是否有些資料欠缺了?