Calculus

2015-02-11 6:32 am
Find the derivative of the function



Question 1:
f(s)= √ ( s^2+1 / (s^2 +4 )

Question 2:
y= 2^(3x)^(2)

回答 (4)

2015-02-11 4:37 pm
✔ 最佳答案
f(s) = √(s^2 + 1) / (s^2 + 4)
f'(s) = [(s^2 + 4)(d/dx)√(s^2 + 1) - √(s^2 + 1)(d/dx)(s^2 + 4)] / (s^2 + 4)^2
= {[(s^2 + 4)(2s)/[2√(s^2 + 1)] - √(s^2 + 1)(2s)]} / (s^2 + 4)^2
= [(s^2 + 4)(s)/√(s^2 + 1) - 2s√(s^2 + 1)] / (s^2 + 4)^2
= [(s^2 + 4)(s) - 2s(s^2 + 1)] / [(s^2 + 4)^2 √(s^2 + 1)]
= (2s - s^3) / [(s^2 + 4)^2 √(s^2 + 1)]

y = 2^(3x)^(2)
√y = 2^(3x)
ln √y = ln 2^(3x)
1/2 ln y = 3x ln 2
(1/2)(1/y)(dy/dx) = 3ln 2
dy/dx = 6yln 2 = (6ln 2)[2^(3x)^(2)]
參考: knowledge
2015-08-03 7:14 pm
For qusetion 2 √(2^(3x)^(2)) can be either + 2^(3x) or- 2^(3x)
Therefore y = 2^(3x)^(2)
y=2^(6x)
ln y = 6x ln 2
1/y dy/dx = 6ln2
dy/dx = 6yln2 = (6ln2)(2^(3x)^(2))
2015-02-11 5:38 pm
Hi, this is Question 1
http://postimg.org/image/ig9xzec9z/
Sorry for the confusion
2015-02-11 7:25 am
q1

[ √ ( s^2+1 ) ] / (s^2 +4 )
or
√ [ (s^2+1) / (s^2 +4 ) ]
or
√ { s^2+ [ 1 / (s^2 +4 ) ] } ?


收錄日期: 2021-04-24 00:08:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150210000051KK00093

檢視 Wayback Machine 備份