Form 4 M2

2015-01-26 3:03 am
1.
(a) Prove that (1-cos2θ) / (1+cos2θ) = tan²θ
(b) Hence, find the value of tan²15°

2.
(a) Prove that cos4θ=8(cos^4)θ-8cos²θ+1.
(b) Hence, find the value of (cos^4)(π/12)- cos²(π/12)

回答 (1)

2015-01-26 4:57 am
✔ 最佳答案
1-cos 2θ=2 sin²θ, 1+cos 2θ=2 cos²θ
(1a) LHS=(1-cos2θ) / (1+cos2θ)=(2 sin²θ) / (2 cos²θ)=tan²θ=RHS
(1b) tan²15°=(1-cos 30°) / (1+cos 30°) ⋯⋯⋯⋯ (from the result in part 1a)=(1-√3 / 2) / (1+√3 / 2)=(2-√3) / (2+√3)
(2a) LHS=cos 4θ=2 cos²2θ-1=2(2 cos²θ-1)²-1=8 cos⁴θ-8 cos²θ+1=RHS
(2b) cos⁴(π/12)-cos²(π/12)=(1/8)(8 cos⁴(π/12)-8 cos²(π/12)+1)-1/8=(1/8) cos (π/3)-1/8=(1/8)(1/2)-1/8=-1/16


收錄日期: 2021-04-15 18:02:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150125000051KK00084

檢視 Wayback Machine 備份