唔識做功課41

2015-01-09 3:15 am
Let f(x) =x^100 -1.
a) Find the remainder when f(x) is divided by x+1.
b) Using the result of (a), find the remainder when 2^100 is divided by 3.

回答 (2)

2015-01-09 3:35 am
✔ 最佳答案
a)The remainder when f(x) is divided by x+1 = f(-1) = (-1)¹ºº - 1 = 1 - 1 = 0.b)Put x = 2 , then f(2) = 2¹ºº - 1 , by the result of (a), the remainder when
f(x) = f(2) = 2¹ºº - 1 is divided by x+1 = 2+1 = 3 is 0 ,
so we let 2¹ºº - 1 = 3n where n is a positive integer, then 2¹ºº = 3n + 1,
therefore the remainder when
2¹ºº is divided by 3 is 1.

2015-01-09 21:19:17 補充:
因為已證明了 2¹ºº - 1 被 3 除的餘數是 0。
所以 2¹ºº - 1 是 3 的倍數, 那麼 (2¹ºº - 1)/3 一定是個整數, 但這個整數是甚麼並
不重要(而且它很大), 因為我們關心的只是2¹ºº - 1 被 3 除的餘數,而 n 只是個不必知道具體數值的商, 所以形式上只需要用 n 來表示它一下以輔助思考 :
(2¹ºº - 1)/3 = n
2¹ºº - 1 = 3n
2¹ºº = 3n + 1 ,
即 2¹ºº 被 3 除的商是 n (具體數值不重要) , 餘數是 1 (這才重要)。

2015-01-09 21:19:29 補充:
如果不用 n , 也可解釋如下 :
7 - 1 = 6 被 3 除的餘數是 0 , 那麼 7 - 1 的下一個整數是 7 , 它被3 除餘1。
同理,
2¹ºº - 1 被 3 除的餘數是 0 , 那麼 2¹ºº - 1 的下一個整數是 2¹ºº ,它被3 除餘1。
2015-01-10 1:38 am
我唔明點解2^100-1=3n


收錄日期: 2021-04-15 17:49:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150108000051KK00086

檢視 Wayback Machine 備份