✔ 最佳答案
1.
(2p + 7)(p - 3) = 2p
2p² - 6p + 7p - 21 = 2p
2p² - p - 21 = 0
(2p - 7)(p + 3) = 0
p = 7/2 or p = -3
2.
(a + 1)(4a - 5) = 3a - 2
4a² - 5a + 4a - 5 = 3a - 2
4a² - 4a - 3 = 0
(2a + 1)(2a - 3) = 0
a = -1/2 or a = 3/2
3.
(x - 2)² = 36
(x - 2)² - 6² = 0
(x - 2 + 6)(x - 2 - 6) = 0
(x + 4)(x - 8) = 0
x = -4 or x = 8
4.
(a + 2/5)² = 64
a + 2/5 = ±8
a = 8 - 2/5 or a = -8 - 2/5
a = 38/5 or a = -42/5
5.
(x + 2)² = 5
x + 2 = ±√5
x = -2 ± √5
6.
3x² - 9x + 4 = 0
x = { -(-9) ± √[(-9)² - 4(3)(4)] } / (2 × 3)
x = (9 ± √33)/6
7.
(x - 3)(x + 4) = 2
x² + 4x - 3x - 12 = 2
x² + x - 14 = 0
x² + x = 14
x² + 2x(1/2) + (1/2)² = 14 + (1/2)²
(x + 1/2)² = 14 + 1/4
(x + 1/2)² = 57/4
x + 1/2 = ±√(57/4)
x + 1/2 = ±√57 / 2
x = (-1 ± √57)/2
8.
2x² - 4x - 1 = 0
2x² - 4x = 1
2x² - 4x + 2 = 1 + 2
2(x² - 2x + 1) = 3
2(x - 1)² = 3
(x - 1)² = 3/2
x - 1 = ±√(3/2)
x = 1 ± √(3/2)
2015-01-04 21:09:42 補充:
以上的所有答案除了計算之外,其實我是有幫你用電腦核對過的。
最後一題如果你希望 rationalize 分母,你可以考慮:
x = 1 ± √(3/2)
= 1 ± √3/√2
= 1 ± √6/2