Permutation & Combination

2015-01-02 12:08 am
6 different pigeons are assigned to live in six different pigeon holes.
In how many ways can any three of them be placed in the wrong pigeons holes?

回答 (3)

2015-01-02 1:37 am
✔ 最佳答案
Assume A, B, C placed in wrong pigeon holes,
ie, B - C - A, or C - A - B
so there are 2 different ways.
As there are C(6,3) ways for 3 different pigeons, so altogether, there are :
2 * C(6,3)
= 40 (ways)

2015-01-01 18:39:35 補充:
例如A, B, C坐錯位,有兩種錯法:
B坐A位,C坐B位,A坐C位;
或者
C坐A位,A坐B位,B坐C位。

6選3人有 C(6,3) 選擇,每種選擇有兩種坐位錯法,
所以共有40種。

2015-01-01 22:38:15 補充:
You are welcome.
2015-01-02 9:15 am
呢個係 derangement 的問題。

先選 3 隻對(或錯)的鴿:6C3 = 20 個情況。

然後處理錯排的情況:
3個物件的錯排數是 !3 = 2
2015-01-02 1:49 am
Assume A, B, C placed in wrong pigeon holes,
ie, B - C - A, or C - A - B
so there are 2 different ways.
As there are C(6,3) ways for 3 different pigeons, so altogether, there are :
2 * C(6,3)
= 40 (ways)

唔明白點解要X2

2015-01-01 19:30:43 補充:
完全明白了,THANK YOU


收錄日期: 2021-04-18 14:39:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20150101000051KK00051

檢視 Wayback Machine 備份