一元二次方程式問題

2014-12-30 1:40 am
請高手幫我解題
(x+9)/(x+8)+(x+7)/(x+6)=(x+10)/(x+9)+(x+6)/(x+5)
謝謝

回答 (4)

2014-12-30 3:26 am
✔ 最佳答案
(x+9)/(x+8)+(x+7)/(x+6)=(x+10)/(x+9)+(x+6)/(x+5)
==> 1+1/(x+8)+1+1/(x+6)=1+1/(x+9)+1+1/(x+5)
==> 1/(x+6)-1/(x+9)=1/(x+5)-1/(x+8)
==> (x+9-x-6)/(x+6)(x+9)=(x+8-x-5)/(x+5)(x+8)
==> (x+6)(x+9)=(x+5)(x+8)
==> x^2+15x+54=x^2+13x+40
==> 2x=-14
==> x=-7
2015-01-02 11:29 am
參考看看他的答案
TS777。CC
2014-12-30 5:16 am
(X+9)/(X+8) +(X+7)/(X+6) = (X+10)/(X+9) +(X+6)(X+5)
[1+1/(X+8)] + [1+1/(X+6)] = [1+1/(X+9)] + [1+1/(X+5)]
1/(X+8) +1/(X+6) = 1/(X+9) +1/(X+5)

令A=X+7,則1/(A+1) +1/(A-1) = 1/(A+2) +1/(A-2)
2A/(A^2 -1) = 2A/(A^2 -4),A/(A^2 -1) = A/(A^2 -4)
A[1/(A^2 -1) -1/(A^2 -4)] =0

(1)0=A=X+7,X=-7
(2)1/(A^2 -1) -1/(A^2 -4) =0
1/(A^2 -1) = 1/(A^2 -4)
A^2 -1 = A^2 -4,impossible

ANS:-7
2014-12-30 2:25 am
(x+9)/(x+8)+(x+7)/(x+6)=(x+10)/(x+9)+(x+6)/(x+5)
(x+6)(x+9)(x+5)(x+9)+(x+7)(x+8)(x+9)(x+5)=(x+10)(x+8)(x+6)(x+5)
+(x+6)(x+8)(x+6)(x+9)
(x+6)(x+9)(x+5)(x+9)-(x+10)(x+8)(x+6)(x+5)
=(x+6)(x+8)(x+6)(x+9)-(x+7)(x+8)(x+9)(x+5)
(x+6)(x+5)[(x+9)(x+9)-(x+10)(x+8)]=(x+8)(x+9)[(x+6)(x+6)-(x+7)(x+5)]
(x+6)(x+5)(x^2+18x+81-x^2-18x-80)
=(x+8)(x+9)(x^2+12x+36-x^2-12x-35)
(x+6)(x+5)(x^2+1)=(x+8)(x+9)(x^2+1)
(x^2+1)[(x^2+11x+30)-(x^2+17x+72)]=0
(x^2+1)(-6x-42)=0
6x+42=0
x=-7




收錄日期: 2021-04-24 23:25:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141229000016KK03125

檢視 Wayback Machine 備份