求自原點到曲面x^2y-z^2+9=0之最短距離?

2014-12-24 5:14 am
求自原點到曲面x^2y-z^2+9=0之最短距離?

回答 (2)

2014-12-24 2:56 pm
✔ 最佳答案
求自原點到曲面x^2y-z^2+9=0之最短距離?F(x,y,z)=√(x^2+y^2+z^2)+λ(yx^2-z^2+9)Fx=x/√(x^2+y^2+z^2) + 2xyλ=0 => λ=-1/2y√(x^2+y^2+z^2)...(1)Fy=y/√(x^2+y^2+z^2) + λx^2=0 => λ=-y/2x^2*√(x^2+y^2+z^2)...(2)Fz=z/√(x^2+y^2+z^2) - 2λz=0 => λ=1/2√(x^2+y^2+z^2)...(3)Eq.(1) = Eq.(3): y=-1Eq.(1) = Eq.(2): x^2=y^2 => x=+-y=-+1原式: z=+-√(yx^2+9)=+-√8=> min=F(-+1,-1,+-√8)=√(1+1+8)=√10

2014-12-28 15:05:12 補充:
min=F(-+1,-1,+-√8) 修改為:

min=√(1+1+8)=√10
2014-12-24 8:28 pm
最短距離 = 3/2*(48)^(1/6) ≈ 2.8596


收錄日期: 2021-04-24 10:20:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141223000010KK03975

檢視 Wayback Machine 備份