✔ 最佳答案
1.
等式兩邊平方,等式恆成立:
(x+5)^2 = (x-7)^2
x^2+10x+25 = x^2-14x+49
24x = 24
x = 1 ...Ans
方法二:
|x+5|=|x-7|
x+5 = x-7 或 -(x-7)
當 x+5 = x-7 , 則 5 = -7 , 矛盾
當 x+5 = -(x-7) = -x+7 , 則 2x = 2 , 故 x=1
2.
(1) 當 x < - 4/3
|3x+4|+|x-2|= -(3x+4) - (x-2) = 5
3x+4+x-2 = -5
4x = -7
x = -7/4
(2) 當 -4/3 ≦ x < 2
|3x+4|+|x-2|= 3x+4 - (x-2) = 5
2x + 6 = 5
2x = -1
x = -1/2
(3) 當 x ≧ 2
|3x+4|+|x-2|= 3x+4 +x-2 = 5
4x+2 = 5
4x = 3
x = 3/4 (不合,因為不滿足x ≧ 2 )
Ans: x = -7/4 或 -1/2
驗算:
當x = -7/4
|3x+4|+|x-2|
=|-21/4 + 4|+|-7/4 - 2|
=|-21/4 + 16/4|+|-7/4 - 8/4|
=|-5/4|+|-15/4|
= 5/4 + 15/4
= 20/4
= 5 , 故驗算無誤.
當x = -1/2 , 請仿照以上方法驗算(略)
3.
因為x為整數, 所以|x-8|也是整數.
5 與 7 之間的整數只有 6 ,
所以|x-8|= 6
故 x-8 = ± 6
x = 2 或 14
Ans: x = 2 或 14
方法二 (比較麻煩的方法)
(1) 當|x-8|≧ 0 , 即 x > 8 或 x < 8
此時|x-8|= x-8
5 < x - 8 < 7
5+8 < (x-8)+8 < 7+8
13 < x < 15
又x為整數, 所以x = 14
(1) 當|x-8|< 0 , 即 -8 ≦ x ≦ 8
此時|x-8|= -(x-8) = 8-x
5 < 8-x < 7
5-8 < (8-x)-8 < 7-8
-3 < -x < -1
3 > x > 1
又x為整數, 所以x = 2
4. (與第2題類似)
(1) 當 x < - 1
|2x-4|+|x+1|= -(2x-4) - (x+1) = 4
-3x+3 = 4
-3x = 1
x = -1/3 (不合,因為不滿足x < - 1 )
(2) 當 -1 ≦ x < 2
|2x-4|+|x+1|= -(2x-4) + x+1 = 4
-x + 5 = 4
-x = -1
x = 1
(3) 當 x ≧ 2
|2x-4|+|x+1|= 2x-4 + x+1 = 4
3x-3 = 4
3x = 7
x = 7/3
Ans: x = 1 或 7/3
( 驗算方法可仿第2小題,略 )