求1,5,11,19,29,.......的nth term

2014-12-18 1:42 am
求1,5,11,19,29,.......的general term 同佢 sum of nth term of the sequence

回答 (3)

2014-12-18 3:10 am
✔ 最佳答案
求1,5,11,19,29,.......的general term 同佢 sum of nth term of the sequence
Sol
1,5,11,19,29,41,55,….
0,4,10,18,28,40,54,….
0*3,1*4,2*5,3*6,4*7,5*8,6*9,….
0*3+1,1*4+1,2*5+1,3*6+1,4*7+1,5*8+1,6*9+1,….
So
a(n)=(n-1)*(n+2)+1=n^2+n-1
Σ(k=1 to n)_a(n)
=Σ(k=1 to n)_n^2+Σ(k=1 to n)_n-Σ(k=1 to n)_1
=n(n+1)(2n+1)/6+n(n+1)/2-n
=(n/6)[(n+1)(2n+1)+3(n+1)-6]
=(n/6)(2n^2+3n+1+3n+3-6)
=n(2n^2+6n-2)/6
=n(n^2+3n-1)/3


2014-12-19 7:10 am
hacky, 以上的大哥其實已經計出答案

T(n) = n^2+n-1

後來寫的是 sum 的部份:

S(n) = n(n^2+3n-1)/3
2014-12-19 12:33 am
SORRY 以上大哥既解我發覺好似唔岩既,IF N=2,3,4.....我係得唔到原本既答案WO,係我計錯還是我唔識睇呢?其實我覺得可以簡單d呀,呢個累加好似唔洗咁複雜.

小人求指教,講錯勿罵,謝謝!!!!


收錄日期: 2021-04-30 19:17:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141217000051KK00077

檢視 Wayback Machine 備份