三角函數的題目

2014-12-06 8:01 am
第一題
θ為銳角,
且sinθ=1-sin^2,
則,
1/1+sinθ + 1/1-sinθ =?

第二題
θ為銳角,
且sinθ=cos^2,
則,
1/1+sinθ + 1/1-sinθ =?

第三題
θ為銳角
若2sinθ+cosθ =2 求 tanθ =?

需要計算過程跟答案>"<
感謝各位大大

回答 (2)

2014-12-06 11:08 am
✔ 最佳答案
1.
[1 / (1 + sinθ)] + [1 / (1 - sinθ)]
= [(1 - sinθ) / (1 + sinθ)(1 - sinθ)] + [(1 + sinθ)/(1 + sinθ)(1 - sinθ)]
= [(1 - sinθ) / (1 - sin²θ)] + [(1 + sinθ) / (1 - sin²θ)]
= [(1 - sinθ) + (1 + sinθ)] / (1-sin²θ)
= 2 / sinθ


====
2.
[1 / (1 + sinθ)] + [1 / (1 - sinθ)]
= [(1 - sinθ) / (1 + sinθ)(1 - sinθ)] + [(1 + sinθ)/(1 + sinθ)(1 - sinθ)]
= [(1 - sinθ) / (1 - sin²θ)] + [(1 + sinθ) / (1 - sin²θ)]
= [(1 - sinθ) + (1 + sinθ)] / (1-sin²θ)
= 2 / cos²θ
= 2 / sinθ


====
3.
2 sinθ + cosθ = 2
2[2sin(θ/2)cos(θ/2)] + [cos²(θ/2) - sin²(θ/2)]= 2[sin²(θ/2) + cos²(θ/2)]
4sin(θ/2)cos(θ/2) + cos²(θ/2) - sin²(θ/2)= 2sin²(θ/2) + 2cos²(θ/2)
3sin²(θ/2) - 4sin(θ/2)cos(θ/2) + cos²(θ/2) = 0
[3sin²(θ/2) - 4sin(θ/2)cos(θ/2) + cos²(θ/2)] / cos²(θ/2)= 0
3tan²(θ/2) - 4tan(θ/2) + 1 = 0
[3tan(θ/2) - 1] [tan(θ/2) - 1] = 0
tan(θ/2) = 1/3 或 tan(θ/2) = 1

tanθ = 2tan(θ/2) / [1 - tan²(θ/2)]

當 tan(θ/2) = 1/3:
tanθ = 2(1/3) / [1 - (1/3)²] = 3/4

當 tan(θ/2) = 1:
tanθ = 2(1) / [1 - (1)²] = 2/0 (undefined)

所以 tanθ = 3/4
2014-12-09 3:34 am
他跟你有一樣的問題
http://ts777.cc


收錄日期: 2021-04-15 17:26:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141206000016KK00002

檢視 Wayback Machine 備份