1. If ∫(upper limit= 2, lower limit= 1) a^x dx=6/ln a, where a>0 and a≠1, find the
value of a.
The question is given that a≠1, but the lower limit is equal to 1, then how can I
solve the question?
2. Proved that
∫(upper limit= 0, lower limit= -a)f(x)dx= ∫(upper limit= a, lower limit= 0)f(-x)dx
Evaluate ∫(upper limit=1, lower limit=-1) [(e^x)-(e^-x)]/(1+x^4) dx
I try to let f(x)=[(e^x)-(e^-x)]/(1+x^4) and a=1, but i cannot solve the question, Why?
Please help! Thank you very much!~