The Cartesian Coordinates (x,y) can be firstly converted into Polar Coordinates (r,θ):
r = √ ( x^2 + y^2 )= √ ( 3^2 + 5^2 )= √34
θ = tan-1 ( y / x )= tan-1 ( 5 / 3 )=59.036…°
After rotation, the Polar Coordinates (r,θ) are converted back to Cartesian Coordinates (x,y).
a. Clockwise 90°, i.e. θ becomesθ-90°=θ- (360°-270°) = -360°+(θ+270°)=θ+270°
Convert the rotated Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) :
x = r × cos( θ+270°)= √34×cos(59.036°+270°)=5
y = r × sin( θ+270°) = √34×sin(59.036°+270°)=-3
b. Clockwise 180°, i.e. θ becomes θ-180°=θ- (360°-180°) = -360°+(θ+180°)=θ+180°
Convert the rotated Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) :
x = r × cos( θ+180°)= √34×cos(59.036°+180°)=-3
y = r × sin( θ+180°) = √34×sin(59.036°+180°)=-5
c. Clockwise 270°, i.e. θ becomes θ-270°=θ- (360°-90°) = -360°+(θ+90°)=θ+90°
Convert the rotated Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) :
x = r × cos( θ+90°)= √34×cos(59.036°+90°)=-5
y = r × sin( θ+90°) = √34×sin(59.036°+90°)=3