Maths

2014-11-27 11:26 pm
Find the max./min. of :
2x^2 + y^2 + 3xy - x - 1 = 0

回答 (3)

2014-11-28 2:22 am
✔ 最佳答案
2x^2 + y^2 + 3xy - x - 1 = 0
==> (2x + y + 1)(x + y - 1) = 0

So, this equation is a pair of straight lines,

the intersection point of these two straight lines is (-2, 3).

There is no such max. or min.

2014-11-28 11:40:44 補充:
No. When x=3, y=-5, then
2x² + y² + 3xy - x - 1
= 18 + 25 - 45 - 3 - 1
= -6
So, no min or max on 2x² + y² + 3xy - x - 1.

(Straight line gets no min or max)
2014-11-28 3:12 am
2x^2 + y^2 + 3xy - x - 1 = 0
(9/4)x^2+3xy+y^2 –(1/4)x^2-x-1=0
[(3/2)x+y]^2-(1/4)(x^2+4x+4)=0
[(3/2)x+y]^2-(1/4)(x+2)^2=0
[(3/2)x+y]^2-[(1/2)(x+2)]^2=0
Since both square terms are ≥0, there exist a minimum when both square terms are zero.
At the minimum point,
[(3/2)x+y]=0 and [(1/2)(x+2)] =0
x=-2, y=3
2014-11-28 2:20 am
Are you asking for the max/min of

"2x² + y² + 3xy - x - 1"

rather than

"2x² + y² + 3xy - x - 1 = 0" ???

2014-11-28 01:00:31 補充:
Then the correct claim should be the minimum of 2x² + y² + 3xy - x - 1 is 0.


收錄日期: 2021-04-11 20:53:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141127000051KK00046

檢視 Wayback Machine 備份