請問這題重積分如何求解?

2014-11-15 10:22 pm
請問這題重積分如何求解:
l l y* arctan (x) dx dy
0->2 y^2/4 ->1
(l表積分符號,積分區間:y: 0->2,x: y^2/4 ->1 )
多謝了!
更新1:

自由自在兄 感謝您的回答 但問題中的積分式好像少乘了y 是積分 y* arctan (x) 而非 arctan (x)呀~

回答 (2)

2014-11-15 11:17 pm
✔ 最佳答案
=================================

圖片參考:https://s.yimg.com/rk/HA05107138/o/1102945419.png


2014-11-15 21:10:50 補充:
令 I = ∫[0 to 2] ∫[y^2/4 to 1] y*arctan(x) dx dy
轉換積分次序,I = ∫[0 to 1] ∫[0 to 2√x] y*arctan(⁡x) dy dx=∫[0 to 1] 2x*arctan(⁡x) dx
=∫[0 to 1] arctan(⁡x) d(x^2) = (x^2*arctan(⁡x)|[0 to 1] - ∫[0 to 1] x^2/(1+x^2) dx
=π/4 - ∫[0 to 1] [1 - 1/(x^2+1)] dx
=π/4 - [x - arctan(⁡x)]| [0 to 1] = π/2 - 1
2014-11-18 12:57 pm
這里很不錯999shopping。com老婆很喜歡
匫儅


收錄日期: 2021-04-23 23:26:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141115000015KK01789

檢視 Wayback Machine 備份