✔ 最佳答案
1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(98*99*100)
Sol
設2/[n(n+1)(n+2)]=a/n+b/(n+1)+c/(n+2)
2=a(n+1)(n+2)+bn(n+2)+cn(n+1)
當n=-1
2=b*(-1)*1
b=-2
當n=-2
2=c*(-2)*(-1)
c=1
當n=-3
2=a*(-2)*(-1)
a=1
2/[n(n+1)(n+2)]=1/n-2/(n+1)+1/(n+2)
So
2/(1*2*3)+2/(2*3*4)+2/(3*4*5)+...+2/(98*99*100)
=(1/1-2/2+1/3)+(1/2-2/3+1/4)+(1/3-2/4+1/5)+(1/4-2/5+1/6)+….
+(1/95-2/96+1/97)+(1/96-2/97+1/98)+(1/97-2/98+1/99)+(1/98-2/99+1/100)
=(1/1-1/2)+(-1/99+1/100)
=4949/9900
1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(98*99*100)
=4949/19800