✔ 最佳答案
As the tangent passes through (-19, 9), so, let the equation of the tangent bey - 9 = m(x + 19)==> y = mx + 19m + 9 ⋯⋯⋯ (from graph, m > 0)Substitute into the circle equation, we get,x² + y² + 28x - 20y = -288==> x² + (mx + 19m + 9)² + 28x - 20(mx + 19m + 9) + 288 = 0==> x² + m²x² + 38m²x + 18mx + 361m² + 342m + 81 + 28x - 20mx - 380m - 180 + 288 = 0==> (m² + 1)x² + (38m² - 2m + 28)x + (361m² - 38m + 189) = 0As it is a tangent, so the discriminant of this equation is 0, that is,(38m² - 2m + 28)² - 4(m² + 1)(361m² - 38m + 189) = 0==> (19m² - m + 14)² = (m² + 1)(361m² - 38m + 189)==> 361m⁴ - 38m³ + 533m² - 28m + 196 = 361m⁴ - 38m³ + 550m² - 38m + 189==> 17m² - 10m - 7 = 0==> (m - 1)(17m + 7) = 0==> m = 1 or m = -7/17 (rej. as m > 0)
So the equation of tangent is :y = x + 19 + 9==> x - y + 28 = 0