✔ 最佳答案
已知a,b皆為整數,則共有______組數對(a,b)滿足條件5(a^2+ab+b^2)=7a+14b
Sol
5(a^2+ab+b^2)=7a+14b
5a^2+5ab+5b^2-7a-14b=0
5a^2+(5b-7)a+(5b^2-14b)=0
D=(5b-7)^2-4*5*(5b^2-14b)
=25b^2-70b+49-100b^2+280b
=-75b^2+210b+49>=0
75b^2-210b<=49
b^2-14b/5<=49/75
(b^2-14b+49/25)<=49/75+49/25
(b-7/5)^2<=196/75
-√(196/75)<=b-7/5<=√(196/75)
-1.6165<=b-1.4<=1.6165
-0.2165<=b<3.0166
0<=b<=3
(1) b=0
5(a^2+0+0)=7a
5a^2=7a
a=0 or a=7/5(不合)
(20) b=1
5(a^2+a+1)=7a+14
5a^2-2a-9=0
無整數解
(3) b=2
5(a^2+2a+4)=7a+28
5a^2+3a-8=0
(5a+8)(a-1)=0
a=1 or a=-8/5(不合)
(4) b=3
5(a^2+3a+9)=7a+42
5a^2+8a+3=0
(5a+3)(a+1)=0
a=-1 or a=-3/5(不合)
So
(a,b)=(0,0) or (1,2) or (-1,3)共3組