微積分 20點

2014-11-07 10:11 am
寫出下列全部題目的做法,謝謝

1. lim(n→0) x[-2/x] answer: -2

2. lim(n→0) [1/xtanx](1-cosx) answer : 1/2

3. f(x)=(∛x) * |2x-7| 求f ' (3)= answer: -17(∛3)/9

4.θ=π/4 lim(n→θ-) (√(1-sin2x)/(4x-π) ) answer:-√2 / 4

回答 (2)

2014-11-07 3:50 pm
✔ 最佳答案
1. lim(x->0)_x[-2/x]
Sol
(1) lim(x->0+)_x[-2/x]
=lim(y->∞)_(1/y)[-2y]
=lim(y->∞)_-2y/y
=-2
(2) lim(x->0-)_x[-2/x]
=lim(y->-∞)_(1/y)[-2y]
=lim(y->∞)_-2y/y
=-2
So
lim(x->0)_x[-2/x]=-2

2. lim(x->0)_[1/(xTanx)](1-Cosx)
=lim(x->0)_(1-Cosx)//(xTanx).. 0/0 type
=lim(x->0)_Sinx/(xSec^2 x+Tanx) 0/0type
=lim(x->0)_Cosx/(2xSec^2 xTanx+Sec^2 x+Sec^2 x)
=1/(2*0+1+1)
=1/2

3. f(x)=x^(1/3)*|2x-7|求f'(3)=?
Sol
f(3)=3^(1/3)
f’(3)=lim(x->3)_[f(x)-f(3)]/(x-3)
=lim(x->3)_[x^(1/3)*(7-2x)-3^(1/3)]/(x-3) 0/0 type
=lim(x->3)_[-2x^(1/3)+(1/3)*x^(-2/3)*(7-2x)]/1
=-2*3^(1/3)+(1/3)*3^(-2/3)*1
=[-2*9*3^(1/3)+(1/3)*9*3^(-2/3)]/9
=[-18*3^(1/3)+3^(1/3)]/9
=-17*3^(1/3)/9

4.lim(x->π/4-)_[√(1-Sin2x)/(4x-π)]
=lim(x->π/4-)_|Cosx-Sinx|/(4x-π)
=lim(x->π/4-)_(Cosx-Sinx)/(4x-π) 0/0 type
=lim(x->π/4-)_(-Sinx-Cosx)/4
=-√2/4


2014-11-08 5:47 am
有人居然回答得出來
強ㄟ


收錄日期: 2021-04-30 19:14:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141107000016KK00284

檢視 Wayback Machine 備份