Quadratic Equations

2014-10-24 7:45 pm

If α and 1/α are the roots of the equation 3x^2 + (k^2 + 1)x + k = 0, find thevalues ofa. k (I calculated)b.α + 1/α(I calculated)c.α^2 + 1/α^2 (I do not know how to do)d. α^3 + 1/α^3(I do not know how to do)

回答 (2)

2014-10-24 8:42 pm
✔ 最佳答案
a) As α and 1/α are the roots of the equation 3x² + (k² + 1)x + k = 0,so, α + 1/α = -(k² + 1)/3 and α * 1/α=k/3, that is,1 = k/3∴ k=3
b) α + 1/α=-(k² + 1)/3=-10/3
c) α² + 1/α²=α² + 2 + 1/α² - 2=(α + 1/α)² - 2=100/9 - 2 ⋯⋯⋯⋯⋯⋯ (α + 1/α=-10/3)=82/9
d) α³ + 1/α³=(α + 1/α)(α² - 1 + 1/α²)=(-10/3)(82/9 - 1) ⋯⋯⋯⋯ (α + 1/α=-10/3, α² + 1/α²=82/9) =-730/27
2014-10-25 1:07 am
c.α^2 + 1/α^2

(α + 1/α)^2
= α^2 + 2 + 1/α^2
= (α^2 + 1/α^2) + 2
Hence α^2 + 1/α^2 = (α + 1/α)^2 - 2
The answer can be obtained simply by putting in the result of b for (α + 1/α).

d. α^3 + 1/α^3

(α + 1/α)^3
= (α^2 + 2 + 1/α^2) x (α + 1/α)
= α^3 + 2α + 1/α + α + 2/α + 1/α^3
= α^3 + 3α + 3/α + 1/α^3
= (α^3 + 1/α^3) + 3(α + 1/α)
Hence α^3 + 1/α^3 = (α + 1/α)^3 - 3(α + 1/α)
The answer can be obtained simply by putting in the result of b for (α + 1/α).


收錄日期: 2021-04-11 20:50:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141024000051KK00029

檢視 Wayback Machine 備份