M1/M2 Mathematical Induction

2014-10-05 8:32 am
1. Prove, by mathematical induction, that n³ - n + 3 is divisible by 3 for all positive integers n.

2. Prove that if n is an odd integer, x^n + 1 is divisible by x + 1.

3. Let a =/ 0 and a =/ 1. Prove by mathematical induction that [1/(a-1)] - (1/a) - [1/(a²)] -...- [1/(a^n)] = {1/[(a^n)(a-1)]} for all positive integers n.

回答 (2)

2014-10-05 9:29 am
✔ 最佳答案
Please read:


圖片參考:https://s.yimg.com/rk/HA00430218/o/657464613.png


2014-10-05 23:28:37 補充:
Don't understand Q.2

你可能未學 factor theorem?

2014-10-10 01:03:21 補充:
哦~
如果未學 factor theorem, 咁就要做得麻煩一d~

你要用長除法慢慢寫出黎, 證明佢係 divisible。
2014-10-10 7:20 am
未學 factor theorem呀


收錄日期: 2021-04-15 16:48:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141005000051KK00004

檢視 Wayback Machine 備份