Maths f(x)

2014-10-02 3:44 am
Let f(x) be a continuous function for all real values of x such that
(1) f(0) is not equal to 0
(2) f '(0)=2
(3) f(a+b)=f(a)f(b) for all real no. a & b

Required:
(a) Show that f(0)=1
(b) Show that f '(x)=2f(x) for all real values of x
更新1:

But for (b), if differentiation is not required / cannot be used, can you just solve by using functions and derivative method?

更新2:

Thanks lot!

回答 (2)

2014-10-02 4:22 am
✔ 最佳答案
(a) From (3), put a=b=0, getsf(0+0)=f(0) f(0)==> [f(0)]²-f(0)=0==> f(0) [f(0)-1]=0==> f(0)=0 (reject, from (1)) or f(0)=1∴ f(0)=1
(b) Differentiate both sides of (b) w.r.t. x, getsf'(a+b) d(a+b)/dx=f(a) f'(b) d(a)/dx+f(b) f'(a) d(b)/dxput a=0, b=x, getsf'(0+x) d(0+x)/dx=f(0) f'(x) d(0)/dx+f(x) f'(0) d(x)/dx==> f'(x) * 1=1*f(x)*0+f(x)*2*1 ⋯⋯⋯⋯ (dx/dx=1,d(0)/dx=0,from (2), f'(0)=2)==> f'(x)=2f(x)

2014-10-01 20:48:19 補充:
What do you mean? Differentiation is the derivative method.
What's mean differentiation cannot be used but must solve by derivative method?

2014-10-01 23:05:45 補充:
原來你説的是 derive from first principle,
f'(x)
=lim(h→0) [f(x+h)-f(x)]/h
=lim(h→0) [f(x) f(h)-f(x)]/h
=f(x) lim(h→0) [f(h)-1]/h
Put x=0, gets
f'(0)=f(0) lim(h→0) [f(h)-1]/h
==> 2=1*lim(h→0) [f(h)-1]/h ⋯⋯ from (2) and part (a)
∴ lim(h→0) [f(h)-1]/h=2
So, f'(x)
=f(x) lim(h→0) [f(h)-1]/h
=f(x)*2
=2f(x)

2014-10-01 23:06:35 補充:
感謝 貓Sir 的提供。
2014-10-02 5:10 am
Bryan,其實你呢題題係係好 common 的以前的 Pure Math 的練習題。

的確在證明 f(x) 是 differentiable everywhere 之前直接用 d/dx 呢個 operator 唔係太好。

你應該用 first principle 這樣做:
先由 (2) 證明 lim(h→0)[ f(h) - 1 ]/h = 2
Put a = 0 and b = h in (3), consider
f'(0) = 2
lim(h→0)[f(0 + h) - f(0)]/h = 2
lim(h→0)[f(0)f(h) - f(0)]/h = 2

2014-10-01 21:13:09 補充:
f(0) lim(h→0)[f(h) - 1]/h = 2
lim(h→0)[f(h) - 1]/h = 2

然後,考慮 for any x,
Consider
 lim(h→0)[f(x + h) - f(x)]/h
= lim(h→0)[f(x)f(h) - f(x)]/h
= f(x)lim(h→0)[f(h) - 1]/h
= f(x)(2)
= 2f(x) is well defined.

Therefore, f'(x) = 2f(x) for all x.


收錄日期: 2021-04-18 00:17:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20141001000051KK00116

檢視 Wayback Machine 備份