✔ 最佳答案
let f(a, b, c) = a^4 + b^4 + c^4 - 2(ab)^2 - 2(bc)^2 - 2(ac)^2since f(b + c, b, c)
= (b + c)^4 + b^4 + c^4 - 2((b + c)b)^2 - 2(bc)^2 - 2((b + c)c)^2
= b^4 + 4(b^3)(c) + 6(b^2)(c^2) + 4bc^3 + c^4 + b^4 + c^4 - 2b^4 - 4(b^3)(c) - 2(b^2)(c^2) - 2(b^2)(c^2) - 2(b^2)(c^2) - 4bc^3 - 2c^4
= 0
thus, a - b - c is a factor of f(a, b, c)
without loss of generality, b - c - a and c - a - b are the factor of f(a, b, c)since f(- b - c, b, c)
= (- b - c)^4 + b^4 + c^4 - 2((- b - c)b)^2 - 2(bc)^2 - 2((- b - c)c)^2
= b^4 + 4(b^3)(c) + 6(b^2)(c^2) + 4bc^3 + c^4 + b^4 + c^4 - 2b^4 - 4(b^3)(c) - 2(b^2)(c^2) - 2(b^2)(c^2) - 2(b^2)(c^2) - 4bc^3 - 2c^4
= 0
thus, a + b + c is a factor of f(a, b, c)So, a^4 + b^4 + c^4 - 2(ab)^2 - 2(bc)^2 - 2(ac)^2
= k(a + b + c)(a - b - c)(b - c - a)(c - a - b)
by comparing the coefficients, k = 1therefore, a^4 + b^4 + c^4 - 2(ab)^2 - 2(bc)^2 - 2(ac)^2
= (a + b + c)(a - b - c)(b - c - a)(c - a - b)