數學多項式

2014-09-25 6:16 am
(X^4-2x^2+x+1)^3除以(x^3-x^2-x+1)其餘式為ax^2+bx+c 則2a+3b+4c? 求詳解

回答 (2)

2014-09-25 2:27 pm
✔ 最佳答案
           x+  1
         ────────────────
x3-x2-x+1)x4+0x3-2x2+ x+1
         )x4- x3- x2+ x
         )───────────────
         )x3-x2+0x+1
         )x3-x2- x+1
         )───────────────
         )x
x^3/(x^3-x^2-x+1)=1…….x^2+x-1
a=1,b=-1,c=-1
2a+3b-4c=1



2014-09-25 8:33 am

(x^4-2x^2+x+1)^3 =(x^3-x^2-x+1)Q(x) + ax^2+bx+c
= (x-1)^2(x+1) Q(x) +ax^2+bx+c
x=1 代入

1^3=a+b+c...(1)

x= - 1 代入

(-1)^3=a-b+c ...(2)

解 (1),(2) 得 b=1, a+c=0

(x^4-2x^2+x+1)^3 = (x-1)^2(x+1) Q(x) +ax^2+x-a

x^4-2x^2+x+1= (x-1)(x^3+x^2-x) +1



[(x-1)(x^3+x^2-x)]^3+3[(x-1)(x^3+x^2-x)]^2+3(x-1)(x^3+x^2-x)+1
= (x-1)^2(x+1) Q(x) +ax^2+x-a

[(x-1)(x^3+x^2-x)]^3+3[(x-1)(x^3+x^2-x)]^2+3(x-1)(x^3+x^2-x)
= (x-1)^2(x+1) Q(x) +ax^2+x-a-1

[(x-1)(x^3+x^2-x)]^3+3[(x-1)(x^3+x^2-x)]^2+3(x-1)(x^3+x^2-x)
= (x-1)^2(x+1) Q(x) + (x-1)[ax + (a+1)]

(x-1)^2(x^3+x^2-x)^3+3(x-1)(x^3+x^2-x)^2+3(x^3+x^2-x)
= (x-1)(x+1) Q(x) + ax + (a+1)

x=1 代入

3=a+a+1 ---> a=1 ---> c= - 1

2a+3b+4c =2(1)+3(1)+4(-1)=1
參考: Paul


收錄日期: 2021-04-30 19:06:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140924000010KK06021

檢視 Wayback Machine 備份