Circle

2014-09-17 3:03 pm
https://i.na.cx/93b0m1.png
1. In the figure, chord BA and chord DC are produced to meet at P. If PA = 4, AB = 5 and PC = 5, then CD = ?



https://i.na.cx/Voe6qa.png
2. DB tangent to the circle, AC = 4, CD = 2. Find AB which is diameter

回答 (2)

2014-09-17 5:10 pm
✔ 最佳答案
1. In Δs PAC, PDB
∠PAC=∠PDB ⋯⋯ (ext.=int. opp., cyclic quad.)
∠PCA=∠PBD ⋯⋯ (ext.=int. opp., cyclic quad.)
∴ ΔPAC~ΔPDB ⋯ (AAA)
ie. PA/PD=PC/PB
==> 4/(5+CD)=5/(4+5)
==> CD=4*9/5-5
∴ CD=2.2 (units)

2. Join BC, as AB is a diameter, so
∠ACB=90° ⋯⋯⋯⋯ (angle in semi-circle)
And, DB is a tangle, so
∠ABD=90° ⋯⋯⋯⋯ (tangent ⊥ radius)
In Δs ACB, ABD
∠A=∠A ⋯⋯⋯⋯⋯ (common)
∠ACB=∠ABD ⋯⋯ (=90°, proved)
∴ ΔACB~ΔABD ⋯ (AAA)
ie. AC/AB=AB/AD
==> AB²=AC*AD=4*(4+2)=24
∴ AB=2√6 (units)
2014-09-17 9:06 pm
1. Alternative method :

PA × PB = PC × PD (intersecting chord)
4 × (4 + 5) = 5 × (5 + CD)
5 + CD = 7.2
CD = 2.2 ...... (ans)

2014-09-17 13:13:50 補充:
2. Alternative method :

AB² = AD² - BD² (Pythagorean theorem)
But BD² = CD × DA (intersecting chords)
Hence, AB² = AD² - CD × DA
AB² = (2 + 4)² - 2 × (2 + 4)
AB = 2√6 ...... (ans)


收錄日期: 2021-05-02 11:04:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140917000051KK00011

檢視 Wayback Machine 備份