F6 Maths 等差數列 (求和法)

2014-09-05 11:09 pm
[1]


一個等差數列的 第3項 與 第4項 的 和 是 - 1

而 首 15 項之和是 195



  該數列的首 26 項之和



= = = = = = = = = = = = = = = = = = = = = = = =


[2]


某等差數列的第n項是 a(n)。 若 a(1) + a(2) + a(3)  = -12


而 a(1) + a(2) + ... + a(5) =  30


求 a(16) + a(17) + ... + a(40)



= = = = = = = = = = = = = = = = = = = = = = = =


[3]


a(1) 與 T(1) 有什麼差別?

回答 (1)

2014-09-06 12:23 am
✔ 最佳答案
1一個等差數列的第3項與第4項的和是-1,而首15項之和是195,求
該數列的首26項之和
Sol
a3=a1+2d
a4=a1+3d
a3+a4=2a1+5d=-1
a15=a1+14d
T15=(a1+a1+14d)*15/2=15a1+105d=195
a1+7d=13
2a1+14d=26
d=3
a1=-8
a26=a1+25d=-8+75=67
T26=(-8+67)*26/2=767
or
設Tn=pn^2+qn
第3項與第4項的和=S4-S2=-1
(16p+4q)-(4p+2q)=-1
12p+2q=-1
T15=225p+15q=195
15(12p+2q)-2(225+15q)=15*(=1)-2*195
-270p=-405
p=1.5
q=-9.5
Tn=1.5p^2-9.5n
T26=1.5*676-9.5*26=767

2某等差數列的第n項是a(n)。若a1+a2+a3=-12,而a1+a2+ ...+a5= 30
求a16+a17+...+a40
Sol
a1+a2+a3=a1+a1+d+a1+2d=3a1+3d=-12
a1+d=-4
a1+a2+…+a5=5*a3=30
a3=6
a1+2d=6
d=10
a1=-14
a15=a1+14d=-14+140=126
a40=a1+39d=-14+390=376
T15=(a1+a15)*15/2=(-14+126)*15/2=840
T40=(a1+a40)*40/2=(-14+376)*40/2=7240
a16+a17+…+a40=7240-840=6400

or設Tn=pn^2+qn
T3=9p+3q=-12
3p+q=-4
T5=25p+5q=30
5p+q=6
p=5
q=-19
Tn=5n^2-19n
T40=5*1600-19*40=7240
T15=5*225-19*15=840
a16+a17+...+a40=7240-840=6400

3 a1與T1有什麼差別?
Sol
數值一樣




收錄日期: 2021-04-30 19:09:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140905000051KK00044

檢視 Wayback Machine 備份