I: identity matrix
A is a n*n matrix.
A^k = O for some positive interger k.
(1) Show that A-I is invertible
sol.
if k=1, then A=O and A-I= -I is invertible.
if k>1, then A^k - I = -I = (A-I)(A^(k-1) + A^(k-2) +...+ I)
(a) n: even number 1=|A-I| => |A-I| ≠ 0 => A-I:invertible
(b) n: odd number -1=|A-I| => |A-I| ≠ 0 => A-I:invertible
---------------------------------------------------------------------------------
if k>1, then A^k - I = -I = (A-I)(A^(k-1) + A^(k-2) +...+ I)
(a) n: even number 1=|A-I| => |A-I| ≠ 0 => A-I:invertible
(b) n: odd number -1=|A-I| => |A-I| ≠ 0 => A-I:invertible
(a)(b)的推論我不懂:
-I = (A-I)(A^(k-1) + A^(k-2) +...+ I)取行列式為何
(A^(k-1) + A^(k-2) +...+ I)會消失?
更新1:
nilpotent matrix
更新2:
.....
更新3:
nilpotent matrix
更新4:
......
更新5:
nilpotent matrix