微分方程一題

2014-08-28 6:15 am
y''-4xy'+4x^2y=xe^x^2
更新1:

(D-2x+√2i)(D-2x-√2i)y是怎麼分的

更新2:

怎麼知道要令yp=axe^(x^2) 為什麼不是yp=(ax+b)e^(x^2) 在幫我解qid=1614082804253

更新3:

to 麻辣 你還沒有發覺你的yp令錯了嗎?

回答 (7)

2014-08-28 8:07 am
2014-08-30 6:02 pm
2014-08-29 12:09 am
原式 = [ ( D - 2x )^2 +2 ]y

= [ ( D - 2x )^2 - ( √2i )^2 ]y

= ( D - 2x + √2i )( D - 2x - √2i )y
2014-08-28 6:15 pm
to 麻辣:
integrate tan x <> sec^2 x
integrate tan x = - ln (cos x)
2014-08-28 3:33 pm
y"-4xy'+4x^2y=xe^x^2 (1) 齊次方程式y"-4xy'+4x^2y=0令y=e^t => y'=e^t*t'y"=e^t(t"+t'^2)代入上式裡面: 0=(t"+t'^2)-4xt'+4x^2
令t'=u+2x => t"=u'+2代入上式裡面: 0=(u'+2)+(u^2+4xu+4x^2)-4x(u+2x)+4x^2=u'+u^2+2=du/(u^2+2)+dx=∫du/(u^2+2)+∫dx+c1=[atan(u/√2)]/√2+x-c1(c1-x)√2=atan(u/√2)tan[(c1-x)√2]=u/√2t'-2x=√2*tan[(c1-x)√2]t=2∫xdx+√2∫tan[(c1-x)√2]dx+ln(c2)=x^2-∫tan[(c1-x)√2]d[(c1-x)√2]+ln(c2)ln(y)=x^2-sec²[(c1-x)√2]+ln(c2)yh(x)=c2*exp{x^2-sec²[(c1-x)√2]}
(2) 特殊解yp=a*x*e^(x^2)yp'=e^(x^2)*(a+2ax^2)yp"=e^(x^2)*(6ax+4ax^3)代入原式裡面,並把e^(x^2)刪除:x=(6ax+4ax^3)-4x(a+2ax^2)+4ax^2=2axa=1/2=> yp(x)=x*e^(x^2)/2
(3) 一般解y(x)=yh+yp=c2*exp{x^2-sec²[(c1-x)√2]}+x*e^(x^2)/2......ans

2014-08-28 07:41:15 補充:
與版主答案有異
但是過程似乎沒有錯誤
有請高人指點

2014-08-28 16:51:46 補充:
感恩自由自在老師的指導

tan積分修改:

t=2∫xdx+√2∫tan[(c1-x)√2]dx+ln(c2)

=x^2-∫tan[(c1-x)√2]d[(c1-x)√2]+ln(c2)



ln(y)=x^2-ln{sec[(c1-x)√2]}+ln(c2)

ln{ysec[(c1-x)√2]/c2}=x^2

y*sec[(c1-x)√2]=exp(c^2*x^2)

yh(x)=c3*cos[√2(c1-x)]*exp(x^2).......c3=exp(c^2)

2014-08-28 16:52:12 補充:
一般解

y(x)=yh+yp

=c3*cos[√2(c1-x)]*exp(x^2)+x*e^(x^2)/2

=exp(x^2){c3*cos[√2(c1-x)]+x}......ans

2014-08-28 16:56:13 補充:
=exp(x^2){c3*cos(√2c1)*cos(√2x)+c3*sin(√2c1)*sin(√2x)}

=exp(x^2){c4*cos(√2x)+c5*sin(√2x)}........ans

=版主答案

2014-08-28 16:58:23 補充:
漏打x/2補充:

y(x)=exp(x^2)*{c4*cos(√2x) + c5*sin(√2x) + x/2}........ans

c4=c3*cos(√2c1)

c5=c3*sin(√2c1)
2014-08-28 6:44 am
沒有這麼複雜答案是y=e^x^2(c1cos√2x+c2sin√2x+x/2)

2014-08-28 10:48:13 補充:
你很厲害喔
我剛剛還在找他哪裡有錯
排版實在太難看了


收錄日期: 2021-04-24 10:08:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140827000010KK08919

檢視 Wayback Machine 備份