Circle (DSE Maths)
O is the centre of the circle. AOB is the diameter of the circle, and it intersects the chord CD at M. If CM= 8 cm, MD= 6cm and OM=MA, find the radius of the circle.
回答 (3)
Let OC=OD=r (radii)
∠MCO=∠MDO=θ (base ∠s,isos△)
Using cos law,
MC²+OC²-2(MC)(OC)cos∠MCO=OM²
8²+r²-16rcosθ=r²/4 ... 1
MD²+OD²-2(MC)(OD)cos∠MDO=OM²
6²+r²-12rcosθ=r²/4 ... 2
Combine 1&2,
8²+r²-16rcosθ=6²+r²-12rcosθ
cosθ=7/r ... 3
Sub 3 into 1
8²+r²-16r(7/r)=r²/4
3r²/4=48
r=8
pingshek 答得好好!
╭∧---∧╮
│ .✪‿✪ │
╰/) ⋈ (\\╯
同學如果不明白 Intersecting chord 的話,可以考慮
△MAD ~ △MCB
收錄日期: 2021-05-01 10:01:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140820000051KK00126
檢視 Wayback Machine 備份